Calcul infinitésimal Exemples

Trouver les points critiques (x^2-2x+1)/x
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.5
Multipliez par .
Étape 1.1.2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.7
Additionnez et .
Étape 1.1.2.8
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.9
Multipliez par .
Étape 1.1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Appliquez la propriété distributive.
Étape 1.1.3.2
Appliquez la propriété distributive.
Étape 1.1.3.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.1.3.3.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1.2.1
Déplacez .
Étape 1.1.3.3.1.2.2
Multipliez par .
Étape 1.1.3.3.1.3
Déplacez à gauche de .
Étape 1.1.3.3.1.4
Multipliez par .
Étape 1.1.3.3.1.5
Multipliez par .
Étape 1.1.3.3.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.2.1
Additionnez et .
Étape 1.1.3.3.2.2
Additionnez et .
Étape 1.1.3.3.3
Soustrayez de .
Étape 1.1.3.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.4.1
Réécrivez comme .
Étape 1.1.3.4.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3.2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Définissez égal à .
Étape 2.3.2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Définissez égal à .
Étape 2.3.3.2
Ajoutez aux deux côtés de l’équation.
Étape 2.3.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Réécrivez comme .
Étape 3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.2.2.3
Plus ou moins est .
Étape 4
Évaluez sur chaque valeur où la dérivée est ou indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.1
Déplacez le moins un du dénominateur de .
Étape 4.1.2.1.2
Réécrivez comme .
Étape 4.1.2.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.2.1
Élevez à la puissance .
Étape 4.1.2.2.2
Multipliez par .
Étape 4.1.2.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.3.1
Additionnez et .
Étape 4.1.2.3.2
Additionnez et .
Étape 4.1.2.3.3
Multipliez par .
Étape 4.2
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Divisez par .
Étape 4.2.2.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1
Un à n’importe quelle puissance est égal à un.
Étape 4.2.2.2.2
Multipliez par .
Étape 4.2.2.3
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.3.1
Soustrayez de .
Étape 4.2.2.3.2
Additionnez et .
Étape 4.3
Évaluez sur .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Remplacez par .
Étape 4.3.2
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Étape 4.4
Indiquez tous les points.
Étape 5