Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Intégrez par parties en utilisant la formule , où et .
Étape 5
Étape 5.1
Associez et .
Étape 5.2
Associez et .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Étape 7.1
Multipliez par .
Étape 7.2
Multipliez par .
Étape 8
Étape 8.1
Laissez . Déterminez .
Étape 8.1.1
Différenciez .
Étape 8.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 8.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 8.1.4
Multipliez par .
Étape 8.2
Réécrivez le problème en utilisant et .
Étape 9
Étape 9.1
Placez le signe moins devant la fraction.
Étape 9.2
Associez et .
Étape 10
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 11
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 12
Étape 12.1
Multipliez par .
Étape 12.2
Multipliez par .
Étape 13
L’intégrale de par rapport à est .
Étape 14
Étape 14.1
Réécrivez comme .
Étape 14.2
Simplifiez
Étape 14.2.1
Associez et .
Étape 14.2.2
Associez et .
Étape 15
Remplacez toutes les occurrences de par .
Étape 16
Associez et .
Étape 17
Remettez les termes dans l’ordre.
Étape 18
La réponse est la dérivée première de la fonction .