Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Appliquez la propriété distributive.
Étape 4.3
Appliquez la propriété distributive.
Étape 4.4
Déplacez .
Étape 4.5
Élevez à la puissance .
Étape 4.6
Élevez à la puissance .
Étape 4.7
Utilisez la règle de puissance pour associer des exposants.
Étape 4.8
Additionnez et .
Étape 4.9
Multipliez par .
Étape 4.10
Multipliez par .
Étape 4.11
Soustrayez de .
Étape 5
Séparez l’intégrale unique en plusieurs intégrales.
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Associez et .
Étape 10
Appliquez la règle de la constante.
Étape 11
Étape 11.1
Simplifiez
Étape 11.2
Remettez les termes dans l’ordre.
Étape 12
La réponse est la dérivée première de la fonction .