Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Lorsque le logarithme approche de l’infini, la valeur passe à .
Étape 1.3
Comme la fonction approche de , la constante négative fois la fraction approche de .
Étape 1.3.1
Étudiez la limite avec le multiple constant retiré.
Étape 1.3.2
Comme l’exposant approche de , la quantité approche de .
Étape 1.3.3
Comme la fonction approche de , la constante négative fois la fraction approche de .
Étape 1.3.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
La dérivée de par rapport à est .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5
Étape 5.1
Multipliez par .
Étape 5.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 6
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 7
Étape 7.1
Placez le signe moins devant la fraction.
Étape 7.2
Multipliez .
Étape 7.2.1
Multipliez par .
Étape 7.2.2
Multipliez par .