Calcul infinitésimal Exemples

Encontre a Derivada de Third f(x)=10e^(9x)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 1.2.3
Remplacez toutes les occurrences de par .
Étape 1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Multipliez par .
Étape 1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.4
Multipliez par .
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Multipliez par .
Étape 2.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.4
Multipliez par .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Multipliez par .
Étape 3.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.4
Multipliez par .
Étape 4
La dérivée troisième de par rapport à est .