Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Déterminez la dérivée première.
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Évaluez .
Étape 2.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.1.2.2
La dérivée de par rapport à est .
Étape 2.1.2.3
Multipliez par .
Étape 2.1.3
Évaluez .
Étape 2.1.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.1.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.3.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.1.3.1.3
Remplacez toutes les occurrences de par .
Étape 2.1.3.2
La dérivée de par rapport à est .
Étape 2.1.3.3
Multipliez par .
Étape 2.1.4
Remettez les termes dans l’ordre.
Étape 2.2
Déterminez la dérivée seconde.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Évaluez .
Étape 2.2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.2.2.3
La dérivée de par rapport à est .
Étape 2.2.2.4
La dérivée de par rapport à est .
Étape 2.2.2.5
Élevez à la puissance .
Étape 2.2.2.6
Élevez à la puissance .
Étape 2.2.2.7
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.2.8
Additionnez et .
Étape 2.2.2.9
Élevez à la puissance .
Étape 2.2.2.10
Élevez à la puissance .
Étape 2.2.2.11
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.2.12
Additionnez et .
Étape 2.2.3
Évaluez .
Étape 2.2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.3.2
La dérivée de par rapport à est .
Étape 2.2.4
Simplifiez
Étape 2.2.4.1
Appliquez la propriété distributive.
Étape 2.2.4.2
Multipliez par .
Étape 2.3
La dérivée seconde de par rapport à est .
Étape 3
Étape 3.1
Définissez la dérivée seconde égale à .
Étape 3.2
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
, pour tout entier
, pour tout entier
Étape 4
Étape 4.1
Remplacez dans pour déterminer la valeur de .
Étape 4.1.1
Remplacez la variable par dans l’expression.
Étape 4.1.2
Simplifiez le résultat.
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
La valeur exacte de est .
Étape 4.1.2.1.2
Annulez le facteur commun de .
Étape 4.1.2.1.2.1
Annulez le facteur commun.
Étape 4.1.2.1.2.2
Réécrivez l’expression.
Étape 4.1.2.1.3
La valeur exacte de est .
Étape 4.1.2.1.4
Appliquez la règle de produit à .
Étape 4.1.2.1.5
Un à n’importe quelle puissance est égal à un.
Étape 4.1.2.1.6
Élevez à la puissance .
Étape 4.1.2.2
Simplifiez l’expression.
Étape 4.1.2.2.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 4.1.2.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.2.2.3
Additionnez et .
Étape 4.1.2.3
La réponse finale est .
Étape 4.2
Le point trouvé en remplaçant dans est . Ce point peut être un point d’inflexion.
Étape 5
Divisez en intervalles autour des points qui pourraient potentiellement être des points d’inflexion.
Étape 6
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
La réponse finale est .
Étape 6.3
Sur , la dérivée seconde est . Comme elle est négative, la dérivée seconde est décroissante sur l’intervalle
Diminue sur depuis
Diminue sur depuis
Étape 7
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
La réponse finale est .
Étape 7.3
Sur , la dérivée seconde est . Comme elle est positive, la dérivée seconde augmente sur l’intervalle .
Augmente sur depuis
Augmente sur depuis
Étape 8
Un point d’inflexion est un point sur une courbe sur lequel la concavité passe du signe plus au signe moins ou du signe moins au signe plus. Dans ce cas, le point d’inflexion est .
Étape 9