Calcul infinitésimal Exemples

Trouver où il y a croissance et décroissance à l'aide des Dérivées f(x)=(x+10)/(x^2)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.1.2.1.2
Multipliez par .
Étape 1.1.2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.1.2.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.5.1
Additionnez et .
Étape 1.1.2.5.2
Multipliez par .
Étape 1.1.2.6
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.1.2.7
Simplifiez en factorisant.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.7.1
Multipliez par .
Étape 1.1.2.7.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.7.2.1
Factorisez à partir de .
Étape 1.1.2.7.2.2
Factorisez à partir de .
Étape 1.1.2.7.2.3
Factorisez à partir de .
Étape 1.1.3
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Factorisez à partir de .
Étape 1.1.3.2
Annulez le facteur commun.
Étape 1.1.3.3
Réécrivez l’expression.
Étape 1.1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Appliquez la propriété distributive.
Étape 1.1.4.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.2.1
Multipliez par .
Étape 1.1.4.2.2
Soustrayez de .
Étape 1.1.4.3
Factorisez à partir de .
Étape 1.1.4.4
Réécrivez comme .
Étape 1.1.4.5
Factorisez à partir de .
Étape 1.1.4.6
Réécrivez comme .
Étape 1.1.4.7
Placez le signe moins devant la fraction.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Définissez le numérateur égal à zéro.
Étape 2.3
Soustrayez des deux côtés de l’équation.
Étape 3
Les valeurs qui rendent la dérivée égale à sont .
Étape 4
Déterminez où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Réécrivez comme .
Étape 4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 5
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée ou indéfinie.
Étape 6
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Remplacez la variable par dans l’expression.
Étape 6.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Additionnez et .
Étape 6.2.1.2
Élevez à la puissance .
Étape 6.2.2
La division de deux valeurs négatives produit une valeur positive.
Étape 6.2.3
La réponse finale est .
Étape 6.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 7
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Remplacez la variable par dans l’expression.
Étape 7.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Additionnez et .
Étape 7.2.1.2
Élevez à la puissance .
Étape 7.2.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Factorisez à partir de .
Étape 7.2.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.2.1
Factorisez à partir de .
Étape 7.2.2.2.2
Annulez le facteur commun.
Étape 7.2.2.2.3
Réécrivez l’expression.
Étape 7.2.3
Placez le signe moins devant la fraction.
Étape 7.2.4
La réponse finale est .
Étape 7.3
Sur la dérivée est . Comme elle est positive, la fonction augmente sur .
Augmente sur depuis
Augmente sur depuis
Étape 8
Remplacez une valeur de l’intervalle dans la dérivée afin de déterminer si la fonction est croissante ou décroissante.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Remplacez la variable par dans l’expression.
Étape 8.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Additionnez et .
Étape 8.2.2
Un à n’importe quelle puissance est égal à un.
Étape 8.2.3
Divisez par .
Étape 8.2.4
Multipliez par .
Étape 8.2.5
La réponse finale est .
Étape 8.3
Sur la dérivée est . Comme elle est négative, la fonction diminue sur .
Diminue sur depuis
Diminue sur depuis
Étape 9
Indiquez les intervalles sur lesquels la fonction est croissante et décroissante.
Augmente sur :
Diminue sur :
Étape 10