Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Déterminez la dérivée première.
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Évaluez .
Étape 1.1.2.1
Réécrivez comme .
Étape 1.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.1.3
La dérivée de par rapport à est .
Étape 1.1.4
Simplifiez
Étape 1.1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.1.4.2
Remettez les termes dans l’ordre.
Étape 1.2
La dérivée première de par rapport à est .
Étape 2
Étape 2.1
Définissez la dérivée première égale à .
Étape 2.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 2.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2.2
Comme contient des nombres et des variables, deux étapes sont nécessaires pour déterminer le plus petit multiple commun. Déterminez le plus petit multiple commun pour la partie numérique puis déterminez le plus petit multiple commun pour la partie variable .
Étape 2.2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.2.5
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.2.6
Le facteur pour est lui-même.
se produit fois.
Étape 2.2.7
Les facteurs pour sont , qui correspond à multipliés entre eux fois.
se produit fois.
Étape 2.2.8
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.2.9
Multipliez par .
Étape 2.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 2.3.1
Multipliez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Simplifiez chaque terme.
Étape 2.3.2.1.1
Annulez le facteur commun de .
Étape 2.3.2.1.1.1
Factorisez à partir de .
Étape 2.3.2.1.1.2
Annulez le facteur commun.
Étape 2.3.2.1.1.3
Réécrivez l’expression.
Étape 2.3.2.1.2
Annulez le facteur commun de .
Étape 2.3.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.3.2.1.2.2
Annulez le facteur commun.
Étape 2.3.2.1.2.3
Réécrivez l’expression.
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Multipliez par .
Étape 2.4
Ajoutez aux deux côtés de l’équation.
Étape 3
Étape 3.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 3.3
Résolvez .
Étape 3.3.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.3.2
Simplifiez .
Étape 3.3.2.1
Réécrivez comme .
Étape 3.3.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.3.2.3
Plus ou moins est .
Étape 4
Étape 4.1
Évaluez sur .
Étape 4.1.1
Remplacez par .
Étape 4.1.2
Simplifiez
Étape 4.1.2.1
Simplifiez chaque terme.
Étape 4.1.2.1.1
Divisez par .
Étape 4.1.2.1.2
Le logarithme naturel de est .
Étape 4.1.2.2
Additionnez et .
Étape 4.2
Évaluez sur .
Étape 4.2.1
Remplacez par .
Étape 4.2.2
Le logarithme naturel de zéro est indéfini.
Indéfini
Indéfini
Étape 4.3
Indiquez tous les points.
Étape 5