Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Étape 1.2.1
Évaluez la limite.
Étape 1.2.1.1
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.2.1.2
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.2.2
Évaluez la limite de en insérant pour .
Étape 1.2.3
Simplifiez la réponse.
Étape 1.2.3.1
La valeur exacte de est .
Étape 1.2.3.2
La valeur exacte de est .
Étape 1.3
Évaluez la limite du dénominateur.
Étape 1.3.1
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.3.2
Évaluez la limite de en insérant pour .
Étape 1.3.3
La valeur exacte de est .
Étape 1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
La dérivée de par rapport à est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
La dérivée de par rapport à est .
Étape 3.4
Réorganisez les facteurs de .
Étape 3.5
La dérivée de par rapport à est .
Étape 4
Étape 4.1
Annulez le facteur commun de .
Étape 4.1.1
Annulez le facteur commun.
Étape 4.1.2
Divisez par .
Étape 4.2
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 4.3
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 5
Évaluez la limite de en insérant pour .
Étape 6
Étape 6.1
La valeur exacte de est .
Étape 6.2
La valeur exacte de est .