Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 1.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.2
La dérivée de par rapport à est .
Étape 1.3.3
Remplacez toutes les occurrences de par .
Étape 1.4
Différenciez.
Étape 1.4.1
Associez et .
Étape 1.4.2
Annulez le facteur commun à et .
Étape 1.4.2.1
Factorisez à partir de .
Étape 1.4.2.2
Annulez les facteurs communs.
Étape 1.4.2.2.1
Factorisez à partir de .
Étape 1.4.2.2.2
Annulez le facteur commun.
Étape 1.4.2.2.3
Réécrivez l’expression.
Étape 1.4.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.4
Simplifiez les termes.
Étape 1.4.4.1
Associez et .
Étape 1.4.4.2
Annulez le facteur commun de .
Étape 1.4.4.2.1
Annulez le facteur commun.
Étape 1.4.4.2.2
Divisez par .
Étape 1.4.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.4.6
Multipliez par .
Étape 1.4.7
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.5
Simplifiez
Étape 1.5.1
Appliquez la propriété distributive.
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Remettez les termes dans l’ordre.
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.3.2
La dérivée de par rapport à est .
Étape 2.3.3.3
Remplacez toutes les occurrences de par .
Étape 2.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.5
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.7
Multipliez par .
Étape 2.3.8
Associez et .
Étape 2.3.9
Annulez le facteur commun de .
Étape 2.3.9.1
Annulez le facteur commun.
Étape 2.3.9.2
Réécrivez l’expression.
Étape 2.3.10
Associez et .
Étape 2.3.11
Annulez le facteur commun à et .
Étape 2.3.11.1
Factorisez à partir de .
Étape 2.3.11.2
Annulez les facteurs communs.
Étape 2.3.11.2.1
Élevez à la puissance .
Étape 2.3.11.2.2
Factorisez à partir de .
Étape 2.3.11.2.3
Annulez le facteur commun.
Étape 2.3.11.2.4
Réécrivez l’expression.
Étape 2.3.11.2.5
Divisez par .
Étape 2.4
Simplifiez
Étape 2.4.1
Appliquez la propriété distributive.
Étape 2.4.2
Associez des termes.
Étape 2.4.2.1
Multipliez par .
Étape 2.4.2.2
Additionnez et .
Étape 2.4.3
Remettez les termes dans l’ordre.
Étape 3
La dérivée seconde de par rapport à est .