Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Étape 1.2.1
Évaluez la limite.
Étape 1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2.1.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.2.1.3
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 1.2.2
Évaluez la limite de en insérant pour .
Étape 1.2.3
Simplifiez la réponse.
Étape 1.2.3.1
Simplifiez chaque terme.
Étape 1.2.3.1.1
La valeur exacte de est .
Étape 1.2.3.1.2
Multipliez par .
Étape 1.2.3.2
Soustrayez de .
Étape 1.3
Évaluez la limite du dénominateur.
Étape 1.3.1
Évaluez la limite.
Étape 1.3.1.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.3.1.2
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.3.1.3
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.3.2
Évaluez la limite de en insérant pour .
Étape 1.3.3
Simplifiez la réponse.
Étape 1.3.3.1
La valeur exacte de est .
Étape 1.3.3.2
L’élévation de à toute puissance positive produit .
Étape 1.3.3.3
Multipliez par .
Étape 1.3.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Évaluez .
Étape 3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.2
La dérivée de par rapport à est .
Étape 3.4.3
Multipliez par .
Étape 3.4.4
Multipliez par .
Étape 3.5
Additionnez et .
Étape 3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.7
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.7.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.7.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.7.3
Remplacez toutes les occurrences de par .
Étape 3.8
Multipliez par .
Étape 3.9
Supprimez les parenthèses.
Étape 3.10
La dérivée de par rapport à est .
Étape 3.11
Réorganisez les facteurs de .
Étape 4
Étape 4.1
Annulez le facteur commun de .
Étape 4.1.1
Annulez le facteur commun.
Étape 4.1.2
Réécrivez l’expression.
Étape 4.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 4.3
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 4.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 4.5
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 5
Évaluez la limite de en insérant pour .
Étape 6
Étape 6.1
Convertissez de à .
Étape 6.2
La valeur exacte de est .
Étape 6.3
Multipliez par .