Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La fonction peut être trouvée en déterminant l’intégrale infinie de la dérivée .
Étape 3
Définissez l’intégrale à résoudre.
Étape 4
Retirez du dénominateur en l’élevant à la puissance .
Étape 5
Étape 5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.2
Multipliez par .
Étape 6
Étape 6.1
Appliquez la propriété distributive.
Étape 6.2
Appliquez la propriété distributive.
Étape 6.3
Utilisez la règle de puissance pour associer des exposants.
Étape 6.4
Soustrayez de .
Étape 6.5
Simplifiez
Étape 6.6
Utilisez la règle de puissance pour associer des exposants.
Étape 6.7
Soustrayez de .
Étape 6.8
Tout ce qui est élevé à la puissance est .
Étape 6.9
Multipliez par .
Étape 6.10
Déplacez .
Étape 7
Séparez l’intégrale unique en plusieurs intégrales.
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 10
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 11
Appliquez la règle de la constante.
Étape 12
Étape 12.1
Simplifiez
Étape 12.2
Remettez les termes dans l’ordre.
Étape 13
La réponse est la dérivée première de la fonction .