Calcul infinitésimal Exemples

Encontre a Derivada de Third f(x)=5e^xcos(x)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 1.3
La dérivée de par rapport à est .
Étape 1.4
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 1.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Appliquez la propriété distributive.
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Remettez les termes dans l’ordre.
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.2.3
La dérivée de par rapport à est .
Étape 2.2.4
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.3.3
La dérivée de par rapport à est .
Étape 2.3.4
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 2.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Appliquez la propriété distributive.
Étape 2.4.2
Appliquez la propriété distributive.
Étape 2.4.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.1
Multipliez par .
Étape 2.4.3.2
Soustrayez de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.2.1
Déplacez .
Étape 2.4.3.2.2
Soustrayez de .
Étape 2.4.3.3
Additionnez et .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.3.1
Déplacez .
Étape 2.4.3.3.2
Additionnez et .
Étape 2.4.3.4
Additionnez et .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 3.3
La dérivée de par rapport à est .
Étape 3.4
Différenciez en utilisant la règle exponentielle qui indique que est =.
Étape 3.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Appliquez la propriété distributive.
Étape 3.5.2
Supprimez les parenthèses.
Étape 3.5.3
Remettez les termes dans l’ordre.
Étape 4
La dérivée troisième de par rapport à est .