Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.2
Évaluez la limite du numérateur.
Étape 1.2.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.2.2
Placez la limite dans l’exposant.
Étape 1.2.3
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 1.2.4
Évaluez les limites en insérant pour toutes les occurrences de .
Étape 1.2.4.1
Évaluez la limite de en insérant pour .
Étape 1.2.4.2
Évaluez la limite de en insérant pour .
Étape 1.2.5
Simplifiez la réponse.
Étape 1.2.5.1
Simplifiez chaque terme.
Étape 1.2.5.1.1
Tout ce qui est élevé à la puissance est .
Étape 1.2.5.1.2
La valeur exacte de est .
Étape 1.2.5.1.3
Multipliez par .
Étape 1.2.5.2
Soustrayez de .
Étape 1.3
Évaluez la limite du dénominateur.
Étape 1.3.1
Évaluez la limite.
Étape 1.3.1.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.3.1.2
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.3.2
Évaluez la limite de en insérant pour .
Étape 1.3.3
Simplifiez la réponse.
Étape 1.3.3.1
La valeur exacte de est .
Étape 1.3.3.2
Multipliez par .
Étape 1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3
Étape 3.1
Différenciez le numérateur et le dénominateur.
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 3.4
Évaluez .
Étape 3.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4.2
La dérivée de par rapport à est .
Étape 3.4.3
Multipliez par .
Étape 3.4.4
Multipliez par .
Étape 3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.6
La dérivée de par rapport à est .
Étape 4
Placez le terme hors de la limite car il constant par rapport à .
Étape 5
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 6
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 7
Placez la limite dans l’exposant.
Étape 8
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 9
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 10
Étape 10.1
Évaluez la limite de en insérant pour .
Étape 10.2
Évaluez la limite de en insérant pour .
Étape 10.3
Évaluez la limite de en insérant pour .
Étape 11
Étape 11.1
Simplifiez le numérateur.
Étape 11.1.1
Tout ce qui est élevé à la puissance est .
Étape 11.1.2
La valeur exacte de est .
Étape 11.1.3
Additionnez et .
Étape 11.2
La valeur exacte de est .
Étape 11.3
Annulez le facteur commun de .
Étape 11.3.1
Annulez le facteur commun.
Étape 11.3.2
Réécrivez l’expression.
Étape 11.4
Multipliez par .