Calcul infinitésimal Exemples

Encontre a Derivada - d/d@VAR h(t)=11arccot(t)+11arccot(1/t)
Étape 1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
La dérivée de par rapport à est .
Étape 2.3
Multipliez par .
Étape 2.4
Associez et .
Étape 2.5
Placez le signe moins devant la fraction.
Étape 3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.2
La dérivée de par rapport à est .
Étape 3.2.3
Remplacez toutes les occurrences de par .
Étape 3.3
Réécrivez comme .
Étape 3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.5
Multipliez par .
Étape 3.6
Multipliez par .
Étape 3.7
Associez et .
Étape 3.8
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 3.9
Associez et .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la règle de produit à .
Étape 4.2
Appliquez la propriété distributive.
Étape 4.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Multipliez par .
Étape 4.3.2
Un à n’importe quelle puissance est égal à un.
Étape 4.3.3
Associez et .
Étape 4.3.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.1
Annulez le facteur commun.
Étape 4.3.4.2
Réécrivez l’expression.
Étape 4.3.5
Remettez les termes dans l’ordre.
Étape 4.3.6
Associez les numérateurs sur le dénominateur commun.
Étape 4.3.7
Additionnez et .
Étape 4.4
Divisez par .