Calcul infinitésimal Exemples

Encontre a Derivada - d/d@VAR P(x)=((4x-8)/(8x-4))
Étape 1
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Factorisez à partir de .
Étape 1.1.3
Factorisez à partir de .
Étape 1.1.4
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.4.1
Factorisez à partir de .
Étape 1.1.4.2
Factorisez à partir de .
Étape 1.1.4.3
Factorisez à partir de .
Étape 1.1.4.4
Annulez le facteur commun.
Étape 1.1.4.5
Réécrivez l’expression.
Étape 1.2
Supprimez les parenthèses.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Factorisez à partir de .
Étape 1.2.3
Factorisez à partir de .
Étape 1.2.4
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Factorisez à partir de .
Étape 1.2.4.2
Factorisez à partir de .
Étape 1.2.4.3
Factorisez à partir de .
Étape 1.2.4.4
Annulez le facteur commun.
Étape 1.2.4.5
Réécrivez l’expression.
Étape 2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Additionnez et .
Étape 3.4.2
Multipliez par .
Étape 3.5
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.8
Multipliez par .
Étape 3.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.10
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 3.10.1
Additionnez et .
Étape 3.10.2
Multipliez par .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Soustrayez de .
Étape 4.2.1.2
Soustrayez de .
Étape 4.2.2
Multipliez par .
Étape 4.2.3
Additionnez et .