Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Multipliez par .
Étape 1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3
Réécrivez comme .
Étape 2
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Étape 3.1
Multipliez par .
Étape 3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.4
Additionnez et .
Étape 3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.6
Multipliez par .
Étape 4
Étape 4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 4.3
Remplacez toutes les occurrences de par .
Étape 5
Étape 5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.2
Multipliez par .
Étape 5.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 5.4
Multipliez par .
Étape 6
Étape 6.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6.2
Associez des termes.
Étape 6.2.1
Associez et .
Étape 6.2.2
Associez et .
Étape 6.3
Remettez les termes dans l’ordre.
Étape 6.4
Simplifiez le dénominateur.
Étape 6.4.1
Factorisez à partir de .
Étape 6.4.1.1
Factorisez à partir de .
Étape 6.4.1.2
Factorisez à partir de .
Étape 6.4.1.3
Factorisez à partir de .
Étape 6.4.2
Appliquez la règle de produit à .
Étape 6.4.3
Élevez à la puissance .
Étape 6.5
Factorisez à partir de .
Étape 6.6
Factorisez à partir de .
Étape 6.7
Séparez les fractions.
Étape 6.8
Divisez par .
Étape 6.9
Associez et .