Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2
Étape 2.1
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.4.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.4.2
La dérivée de par rapport à est .
Étape 2.4.3
Remplacez toutes les occurrences de par .
Étape 2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.6
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.9
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.10
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.11
Multipliez par .
Étape 2.12
Déplacez à gauche de .
Étape 2.13
Additionnez et .
Étape 2.14
Déplacez à gauche de .
Étape 2.15
Multipliez par .
Étape 2.16
Soustrayez de .
Étape 2.17
Multipliez par .
Étape 3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Appliquez la propriété distributive.
Étape 4.3
Appliquez la propriété distributive.
Étape 4.4
Associez des termes.
Étape 4.4.1
Multipliez par .
Étape 4.4.2
Multipliez par .
Étape 4.4.3
Multipliez par .
Étape 4.4.4
Additionnez et .
Étape 4.5
Remettez les termes dans l’ordre.