Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Utilisez pour réécrire comme .
Étape 2
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
La dérivée de par rapport à est .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Multipliez par la réciproque de la fraction pour diviser par .
Étape 4
Multipliez par .
Étape 5
Différenciez en utilisant la règle du quotient qui indique que est où et .
Étape 6
Étape 6.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 6.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 6.3
Remplacez toutes les occurrences de par .
Étape 7
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 8
Associez et .
Étape 9
Associez les numérateurs sur le dénominateur commun.
Étape 10
Étape 10.1
Multipliez par .
Étape 10.2
Soustrayez de .
Étape 11
Étape 11.1
Placez le signe moins devant la fraction.
Étape 11.2
Associez et .
Étape 11.3
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 12
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 13
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 14
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 15
Multipliez par .
Étape 16
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 17
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 18
Multipliez par .
Étape 19
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 20
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 21
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 22
Multipliez par .
Étape 23
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 24
Étape 24.1
Additionnez et .
Étape 24.2
Multipliez par .
Étape 24.3
Multipliez par .
Étape 25
Étape 25.1
Factorisez à partir de .
Étape 25.2
Annulez le facteur commun.
Étape 25.3
Réécrivez l’expression.
Étape 26
Étape 26.1
Simplifiez le numérateur.
Étape 26.1.1
Ajoutez des parenthèses.
Étape 26.1.2
Laissez . Remplacez toutes les occurrences de par .
Étape 26.1.2.1
Développez à l’aide de la méthode FOIL.
Étape 26.1.2.1.1
Appliquez la propriété distributive.
Étape 26.1.2.1.2
Appliquez la propriété distributive.
Étape 26.1.2.1.3
Appliquez la propriété distributive.
Étape 26.1.2.2
Simplifiez et associez les termes similaires.
Étape 26.1.2.2.1
Simplifiez chaque terme.
Étape 26.1.2.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 26.1.2.2.1.2
Multipliez par en additionnant les exposants.
Étape 26.1.2.2.1.2.1
Déplacez .
Étape 26.1.2.2.1.2.2
Multipliez par .
Étape 26.1.2.2.1.3
Multipliez par .
Étape 26.1.2.2.1.4
Multipliez par .
Étape 26.1.2.2.1.5
Multipliez par .
Étape 26.1.2.2.1.6
Multipliez par .
Étape 26.1.2.2.2
Additionnez et .
Étape 26.1.2.3
Réécrivez en utilisant la commutativité de la multiplication.
Étape 26.1.2.4
Multipliez par en additionnant les exposants.
Étape 26.1.2.4.1
Déplacez .
Étape 26.1.2.4.2
Multipliez par .
Étape 26.1.2.5
Multipliez par .
Étape 26.1.3
Remplacez toutes les occurrences de par .
Étape 26.1.4
Simplifiez
Étape 26.1.4.1
Simplifiez chaque terme.
Étape 26.1.4.1.1
Multipliez les exposants dans .
Étape 26.1.4.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 26.1.4.1.1.2
Annulez le facteur commun de .
Étape 26.1.4.1.1.2.1
Annulez le facteur commun.
Étape 26.1.4.1.1.2.2
Réécrivez l’expression.
Étape 26.1.4.1.2
Simplifiez
Étape 26.1.4.1.3
Appliquez la propriété distributive.
Étape 26.1.4.1.4
Multipliez par .
Étape 26.1.4.1.5
Multipliez par .
Étape 26.1.4.2
Associez les termes opposés dans .
Étape 26.1.4.2.1
Soustrayez de .
Étape 26.1.4.2.2
Additionnez et .
Étape 26.1.4.3
Additionnez et .
Étape 26.2
Associez des termes.
Étape 26.2.1
Réécrivez comme un produit.
Étape 26.2.2
Multipliez par .
Étape 26.2.3
Utilisez la règle de puissance pour associer des exposants.
Étape 26.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 26.2.5
Additionnez et .
Étape 26.2.6
Annulez le facteur commun de .
Étape 26.2.6.1
Annulez le facteur commun.
Étape 26.2.6.2
Réécrivez l’expression.
Étape 26.2.7
Simplifiez
Étape 26.3
Factorisez à partir de .
Étape 26.3.1
Factorisez à partir de .
Étape 26.3.2
Factorisez à partir de .
Étape 26.3.3
Factorisez à partir de .