Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2
La dérivée de par rapport à est .
Étape 1.3
Remplacez toutes les occurrences de par .
Étape 2
Étape 2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2
La dérivée de par rapport à est .
Étape 2.3
Remplacez toutes les occurrences de par .
Étape 3
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3
Simplifiez l’expression.
Étape 3.3.1
Multipliez par .
Étape 3.3.2
Déplacez à gauche de .
Étape 4
Étape 4.1
Réécrivez en termes de sinus et de cosinus.
Étape 4.2
Multipliez .
Étape 4.2.1
Associez et .
Étape 4.2.2
Associez et .
Étape 4.3
Réécrivez en termes de sinus et de cosinus.
Étape 4.4
Multipliez .
Étape 4.4.1
Multipliez par .
Étape 4.4.2
Élevez à la puissance .
Étape 4.4.3
Élevez à la puissance .
Étape 4.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 4.4.5
Additionnez et .
Étape 4.5
Factorisez à partir de .
Étape 4.6
Séparez les fractions.
Étape 4.7
Réécrivez comme un produit.
Étape 4.8
Écrivez comme une fraction avec le dénominateur .
Étape 4.9
Simplifiez
Étape 4.9.1
Divisez par .
Étape 4.9.2
Convertissez de à .
Étape 4.10
Séparez les fractions.
Étape 4.11
Convertissez de à .
Étape 4.12
Divisez par .