Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.5
Simplifiez l’expression.
Étape 1.5.1
Additionnez et .
Étape 1.5.2
Déplacez à gauche de .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3
Multipliez par .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.5
Simplifiez l’expression.
Étape 4.1.5.1
Additionnez et .
Étape 4.1.5.2
Déplacez à gauche de .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Divisez chaque terme dans par et simplifiez.
Étape 5.2.1
Divisez chaque terme dans par .
Étape 5.2.2
Simplifiez le côté gauche.
Étape 5.2.2.1
Annulez le facteur commun de .
Étape 5.2.2.1.1
Annulez le facteur commun.
Étape 5.2.2.1.2
Réécrivez l’expression.
Étape 5.2.2.2
Annulez le facteur commun de .
Étape 5.2.2.2.1
Annulez le facteur commun.
Étape 5.2.2.2.2
Divisez par .
Étape 5.2.3
Simplifiez le côté droit.
Étape 5.2.3.1
Annulez le facteur commun à et .
Étape 5.2.3.1.1
Factorisez à partir de .
Étape 5.2.3.1.2
Annulez les facteurs communs.
Étape 5.2.3.1.2.1
Factorisez à partir de .
Étape 5.2.3.1.2.2
Annulez le facteur commun.
Étape 5.2.3.1.2.3
Réécrivez l’expression.
Étape 5.2.3.2
Divisez par .
Étape 6
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Comme le test de la dérivée première a échoué, il n’y a aucun extremum local.
Aucun extremum local
Étape 10