Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3
Multipliez par .
Étape 1.3
Évaluez .
Étape 1.3.1
Réécrivez comme .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.5
Simplifiez
Étape 1.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.5.2
Additionnez et .
Étape 2
Étape 2.1
Différenciez.
Étape 2.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 2.2.2
Réécrivez comme .
Étape 2.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3.3
Remplacez toutes les occurrences de par .
Étape 2.2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.6
Multipliez les exposants dans .
Étape 2.2.6.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.6.2
Multipliez par .
Étape 2.2.7
Multipliez par .
Étape 2.2.8
Élevez à la puissance .
Étape 2.2.9
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.10
Soustrayez de .
Étape 2.2.11
Multipliez par .
Étape 2.2.12
Multipliez par .
Étape 2.2.13
Additionnez et .
Étape 2.3
Simplifiez
Étape 2.3.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.3.2
Associez des termes.
Étape 2.3.2.1
Associez et .
Étape 2.3.2.2
Additionnez et .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2
Évaluez .
Étape 4.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.2.3
Multipliez par .
Étape 4.1.3
Évaluez .
Étape 4.1.3.1
Réécrivez comme .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.5
Simplifiez
Étape 4.1.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.1.5.2
Additionnez et .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 5.3
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 5.3.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 5.3.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 5.4
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 5.4.1
Multipliez chaque terme dans par .
Étape 5.4.2
Simplifiez le côté gauche.
Étape 5.4.2.1
Annulez le facteur commun de .
Étape 5.4.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 5.4.2.1.2
Annulez le facteur commun.
Étape 5.4.2.1.3
Réécrivez l’expression.
Étape 5.5
Résolvez l’équation.
Étape 5.5.1
Réécrivez l’équation comme .
Étape 5.5.2
Divisez chaque terme dans par et simplifiez.
Étape 5.5.2.1
Divisez chaque terme dans par .
Étape 5.5.2.2
Simplifiez le côté gauche.
Étape 5.5.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5.5.2.2.2
Annulez le facteur commun de .
Étape 5.5.2.2.2.1
Annulez le facteur commun.
Étape 5.5.2.2.2.2
Divisez par .
Étape 5.5.2.3
Simplifiez le côté droit.
Étape 5.5.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5.5.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 5.5.4
Simplifiez .
Étape 5.5.4.1
Réécrivez comme .
Étape 5.5.4.2
Toute racine de est .
Étape 5.5.4.3
Multipliez par .
Étape 5.5.4.4
Associez et simplifiez le dénominateur.
Étape 5.5.4.4.1
Multipliez par .
Étape 5.5.4.4.2
Élevez à la puissance .
Étape 5.5.4.4.3
Élevez à la puissance .
Étape 5.5.4.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 5.5.4.4.5
Additionnez et .
Étape 5.5.4.4.6
Réécrivez comme .
Étape 5.5.4.4.6.1
Utilisez pour réécrire comme .
Étape 5.5.4.4.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.5.4.4.6.3
Associez et .
Étape 5.5.4.4.6.4
Annulez le facteur commun de .
Étape 5.5.4.4.6.4.1
Annulez le facteur commun.
Étape 5.5.4.4.6.4.2
Réécrivez l’expression.
Étape 5.5.4.4.6.5
Simplifiez
Étape 5.5.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5.5.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.5.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.5.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 6
Étape 6.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6.2
Résolvez .
Étape 6.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6.2.2
Simplifiez .
Étape 6.2.2.1
Réécrivez comme .
Étape 6.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.2.2.3
Plus ou moins est .
Étape 6.3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Simplifiez le dénominateur.
Étape 9.1.1
Appliquez la règle de produit à .
Étape 9.1.2
Simplifiez le numérateur.
Étape 9.1.2.1
Réécrivez comme .
Étape 9.1.2.2
Factorisez .
Étape 9.1.2.3
Extrayez les termes de sous le radical.
Étape 9.1.3
Annulez le facteur commun à et .
Étape 9.1.3.1
Factorisez à partir de .
Étape 9.1.3.2
Annulez les facteurs communs.
Étape 9.1.3.2.1
Factorisez à partir de .
Étape 9.1.3.2.2
Annulez le facteur commun.
Étape 9.1.3.2.3
Réécrivez l’expression.
Étape 9.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 9.3
Multipliez par .
Étape 9.4
Associez et simplifiez le dénominateur.
Étape 9.4.1
Multipliez par .
Étape 9.4.2
Élevez à la puissance .
Étape 9.4.3
Élevez à la puissance .
Étape 9.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 9.4.5
Additionnez et .
Étape 9.4.6
Réécrivez comme .
Étape 9.4.6.1
Utilisez pour réécrire comme .
Étape 9.4.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 9.4.6.3
Associez et .
Étape 9.4.6.4
Annulez le facteur commun de .
Étape 9.4.6.4.1
Annulez le facteur commun.
Étape 9.4.6.4.2
Réécrivez l’expression.
Étape 9.4.6.5
Simplifiez
Étape 9.5
Annulez le facteur commun à et .
Étape 9.5.1
Factorisez à partir de .
Étape 9.5.2
Annulez les facteurs communs.
Étape 9.5.2.1
Élevez à la puissance .
Étape 9.5.2.2
Factorisez à partir de .
Étape 9.5.2.3
Annulez le facteur commun.
Étape 9.5.2.4
Réécrivez l’expression.
Étape 9.5.2.5
Divisez par .
Étape 10
Comme le test de la dérivée première a échoué, il n’y a aucun extremum local.
Aucun extremum local
Étape 11