Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Remplacez toutes les occurrences de par .
Étape 1.2
Différenciez.
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.4
Simplifiez l’expression.
Étape 1.2.4.1
Additionnez et .
Étape 1.2.4.2
Multipliez par .
Étape 2
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
La dérivée de par rapport à est .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Différenciez.
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4
Simplifiez l’expression.
Étape 2.2.4.1
Additionnez et .
Étape 2.2.4.2
Multipliez par .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 5
Étape 5.1
La valeur exacte de est .
Étape 6
Étape 6.1
Soustrayez des deux côtés de l’équation.
Étape 6.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.3
Soustrayez de .
Étape 6.4
Divisez par .
Étape 7
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 8
Étape 8.1
Simplifiez .
Étape 8.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 8.1.2
Associez les fractions.
Étape 8.1.2.1
Associez et .
Étape 8.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 8.1.3
Simplifiez le numérateur.
Étape 8.1.3.1
Multipliez par .
Étape 8.1.3.2
Soustrayez de .
Étape 8.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 8.2.1
Soustrayez des deux côtés de l’équation.
Étape 8.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 8.2.3
Soustrayez de .
Étape 8.2.4
Annulez le facteur commun de .
Étape 8.2.4.1
Annulez le facteur commun.
Étape 8.2.4.2
Divisez par .
Étape 9
La solution de l’équation est .
Étape 10
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 11
Étape 11.1
Additionnez et .
Étape 11.2
La valeur exacte de est .
Étape 11.3
Multipliez par .
Étape 12
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 13
Étape 13.1
Remplacez la variable par dans l’expression.
Étape 13.2
Simplifiez le résultat.
Étape 13.2.1
Additionnez et .
Étape 13.2.2
La valeur exacte de est .
Étape 13.2.3
La réponse finale est .
Étape 14
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 15
Étape 15.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 15.2
Associez les fractions.
Étape 15.2.1
Associez et .
Étape 15.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 15.3
Simplifiez le numérateur.
Étape 15.3.1
Déplacez à gauche de .
Étape 15.3.2
Additionnez et .
Étape 15.4
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 15.5
La valeur exacte de est .
Étape 15.6
Multipliez .
Étape 15.6.1
Multipliez par .
Étape 15.6.2
Multipliez par .
Étape 16
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 17
Étape 17.1
Remplacez la variable par dans l’expression.
Étape 17.2
Simplifiez le résultat.
Étape 17.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 17.2.2
Associez les fractions.
Étape 17.2.2.1
Associez et .
Étape 17.2.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 17.2.3
Simplifiez le numérateur.
Étape 17.2.3.1
Déplacez à gauche de .
Étape 17.2.3.2
Additionnez et .
Étape 17.2.4
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 17.2.5
La valeur exacte de est .
Étape 17.2.6
Multipliez par .
Étape 17.2.7
La réponse finale est .
Étape 18
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Étape 19