Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux g(x)=sin(x+pi/2)
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Remplacez toutes les occurrences de par .
Étape 1.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.4.1
Additionnez et .
Étape 1.2.4.2
Multipliez par .
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.1.2
La dérivée de par rapport à est .
Étape 2.1.3
Remplacez toutes les occurrences de par .
Étape 2.2
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.4
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1
Additionnez et .
Étape 2.2.4.2
Multipliez par .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 5
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
La valeur exacte de est .
Étape 6
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Soustrayez des deux côtés de l’équation.
Étape 6.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.3
Soustrayez de .
Étape 6.4
Divisez par .
Étape 7
La fonction cosinus est positive dans les premier et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 8
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 8.1.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 8.1.2.1
Associez et .
Étape 8.1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 8.1.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 8.1.3.1
Multipliez par .
Étape 8.1.3.2
Soustrayez de .
Étape 8.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Soustrayez des deux côtés de l’équation.
Étape 8.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 8.2.3
Soustrayez de .
Étape 8.2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.4.1
Annulez le facteur commun.
Étape 8.2.4.2
Divisez par .
Étape 9
La solution de l’équation est .
Étape 10
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 11
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Additionnez et .
Étape 11.2
La valeur exacte de est .
Étape 11.3
Multipliez par .
Étape 12
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 13
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Remplacez la variable par dans l’expression.
Étape 13.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 13.2.1
Additionnez et .
Étape 13.2.2
La valeur exacte de est .
Étape 13.2.3
La réponse finale est .
Étape 14
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 15
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 15.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1
Associez et .
Étape 15.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 15.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 15.3.1
Déplacez à gauche de .
Étape 15.3.2
Additionnez et .
Étape 15.4
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 15.5
La valeur exacte de est .
Étape 15.6
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 15.6.1
Multipliez par .
Étape 15.6.2
Multipliez par .
Étape 16
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 17
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 17.1
Remplacez la variable par dans l’expression.
Étape 17.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 17.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 17.2.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 17.2.2.1
Associez et .
Étape 17.2.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 17.2.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 17.2.3.1
Déplacez à gauche de .
Étape 17.2.3.2
Additionnez et .
Étape 17.2.4
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le sinus est négatif dans le quatrième quadrant.
Étape 17.2.5
La valeur exacte de est .
Étape 17.2.6
Multipliez par .
Étape 17.2.7
La réponse finale est .
Étape 18
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Étape 19