Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux P(x)=(-0.1^2+100x-60)/(4000x)
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle multiple constante.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Élevez à la puissance .
Étape 1.1.2
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Multipliez par .
Étape 1.1.2.2
Soustrayez de .
Étape 1.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.4
Multipliez par .
Étape 1.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.6.1
Additionnez et .
Étape 1.3.6.2
Déplacez à gauche de .
Étape 1.3.7
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.8
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.8.1
Multipliez par .
Étape 1.3.8.2
Multipliez par .
Étape 1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Appliquez la propriété distributive.
Étape 1.4.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1.1
Multipliez par .
Étape 1.4.2.1.2
Multipliez par .
Étape 1.4.2.2
Soustrayez de .
Étape 1.4.2.3
Additionnez et .
Étape 1.4.3
Factorisez à partir de .
Étape 1.4.4
Factorisez à partir de .
Étape 1.4.5
Séparez les fractions.
Étape 1.4.6
Divisez par .
Étape 1.4.7
Associez et .
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2.2
Multipliez par .
Étape 2.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.4
Multipliez par .
Étape 2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.5.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.1
Associez et .
Étape 2.5.2.2
Placez le signe moins devant la fraction.
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Comme il n’y a pas de valeur de qui rende la dérivée première égale à , il n’y a aucun extremum local.
Aucun extremum local
Étape 5
Aucun extremum local
Étape 6