Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux h(y)=arctan(y^2)
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.1.2
La dérivée de par rapport à est .
Étape 1.1.3
Remplacez toutes les occurrences de par .
Étape 1.2
Différenciez en utilisant la règle de puissance.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.2.1.2
Multipliez par .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.2.3
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Associez et .
Étape 1.2.3.2
Associez et .
Étape 1.2.3.3
Remettez les termes dans l’ordre.
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle du quotient qui indique que est et .
Étape 2.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.2
Multipliez par .
Étape 2.3.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.6
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.6.1
Additionnez et .
Étape 2.3.6.2
Multipliez par .
Étape 2.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Déplacez .
Étape 2.4.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Élevez à la puissance .
Étape 2.4.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.4.3
Additionnez et .
Étape 2.5
Soustrayez de .
Étape 2.6
Associez et .
Étape 2.7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Appliquez la propriété distributive.
Étape 2.7.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.2.1
Multipliez par .
Étape 2.7.2.2
Multipliez par .
Étape 2.7.3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.3.1
Factorisez à partir de .
Étape 2.7.3.2
Factorisez à partir de .
Étape 2.7.3.3
Factorisez à partir de .
Étape 2.7.4
Factorisez à partir de .
Étape 2.7.5
Réécrivez comme .
Étape 2.7.6
Factorisez à partir de .
Étape 2.7.7
Réécrivez comme .
Étape 2.7.8
Placez le signe moins devant la fraction.
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Définissez le numérateur égal à zéro.
Étape 5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun.
Étape 5.2.1.2
Divisez par .
Étape 5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Divisez par .
Étape 6
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 7
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
L’élévation de à toute puissance positive produit .
Étape 7.1.2
Multipliez par .
Étape 7.1.3
Soustrayez de .
Étape 7.2
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
L’élévation de à toute puissance positive produit .
Étape 7.2.2
Additionnez et .
Étape 7.2.3
Un à n’importe quelle puissance est égal à un.
Étape 7.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Multipliez par .
Étape 7.3.2
Divisez par .
Étape 7.3.3
Multipliez par .
Étape 8
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 9
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Remplacez la variable par dans l’expression.
Étape 9.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
L’élévation de à toute puissance positive produit .
Étape 9.2.2
La valeur exacte de est .
Étape 9.2.3
La réponse finale est .
Étape 10
Ce sont les extrema locaux pour .
est un minimum local
Étape 11