Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
Étape 2.1
Factorisez à partir de .
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.2
Factorisez à partir de .
Étape 2.1.3
Factorisez à partir de .
Étape 2.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5
Additionnez et .
Étape 2.6
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.7
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.8
Associez les fractions.
Étape 2.8.1
Multipliez par .
Étape 2.8.2
Associez et .
Étape 2.8.3
Simplifiez l’expression.
Étape 2.8.3.1
Multipliez par .
Étape 2.8.3.2
Placez le signe moins devant la fraction.
Étape 3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Comme il n’y a pas de valeur de qui rende la dérivée première égale à , il n’y a aucun extremum local.
Aucun extremum local
Étape 6
Aucun extremum local
Étape 7