Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux y=450x-0.25x^3
Étape 1
Écrivez comme une fonction.
Étape 2
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3
Multipliez par .
Étape 2.4
Remettez les termes dans l’ordre.
Étape 3
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3
Multipliez par .
Étape 3.3
Différenciez en utilisant la règle de la constante.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Additionnez et .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.2.3
Multipliez par .
Étape 5.1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.3.3
Multipliez par .
Étape 5.1.4
Remettez les termes dans l’ordre.
Étape 5.2
La dérivée première de par rapport à est .
Étape 6
Définissez la dérivée première égale à puis résolvez l’équation .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez la dérivée première égale à .
Étape 6.2
Soustrayez des deux côtés de l’équation.
Étape 6.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Divisez chaque terme dans par .
Étape 6.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.1
Annulez le facteur commun.
Étape 6.3.2.1.2
Divisez par .
Étape 6.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.1
Divisez par .
Étape 6.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1.1
Factorisez à partir de .
Étape 6.5.1.2
Réécrivez comme .
Étape 6.5.2
Extrayez les termes de sous le radical.
Étape 6.6
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 7
Déterminez les valeurs où la dérivée est indéfinie.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 8
Points critiques à évaluer.
Étape 9
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 10
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Multipliez par .
Étape 10.2
Multipliez par .
Étape 11
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 12
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 12.1
Remplacez la variable par dans l’expression.
Étape 12.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.1
Multipliez par .
Étape 12.2.1.2
Appliquez la règle de produit à .
Étape 12.2.1.3
Élevez à la puissance .
Étape 12.2.1.4
Réécrivez comme .
Étape 12.2.1.5
Élevez à la puissance .
Étape 12.2.1.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.6.1
Factorisez à partir de .
Étape 12.2.1.6.2
Réécrivez comme .
Étape 12.2.1.7
Extrayez les termes de sous le radical.
Étape 12.2.1.8
Multipliez par .
Étape 12.2.1.9
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 12.2.1.9.1
Multipliez par .
Étape 12.2.1.9.2
Multipliez par .
Étape 12.2.2
Soustrayez de .
Étape 12.2.3
La réponse finale est .
Étape 13
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 14
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 14.1
Multipliez par .
Étape 14.2
Multipliez par .
Étape 15
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 16
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 16.1
Remplacez la variable par dans l’expression.
Étape 16.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 16.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 16.2.1.1
Multipliez par .
Étape 16.2.1.2
Appliquez la règle de produit à .
Étape 16.2.1.3
Élevez à la puissance .
Étape 16.2.1.4
Réécrivez comme .
Étape 16.2.1.5
Élevez à la puissance .
Étape 16.2.1.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 16.2.1.6.1
Factorisez à partir de .
Étape 16.2.1.6.2
Réécrivez comme .
Étape 16.2.1.7
Extrayez les termes de sous le radical.
Étape 16.2.1.8
Multipliez par .
Étape 16.2.1.9
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 16.2.1.9.1
Multipliez par .
Étape 16.2.1.9.2
Multipliez par .
Étape 16.2.2
Additionnez et .
Étape 16.2.3
La réponse finale est .
Étape 17
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Étape 18