Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Écrivez comme une fonction.
Étape 2
La dérivée de par rapport à est .
Étape 3
Étape 3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2
La dérivée de par rapport à est .
Étape 4
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 5
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Étape 5.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5.2.2
Divisez par .
Étape 5.3
Simplifiez le côté droit.
Étape 5.3.1
Divisez par .
Étape 6
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 7
Étape 7.1
La valeur exacte de est .
Étape 8
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 9
Soustrayez de .
Étape 10
La solution de l’équation est .
Étape 11
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 12
Étape 12.1
La valeur exacte de est .
Étape 12.2
Multipliez par .
Étape 13
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 14
Étape 14.1
Remplacez la variable par dans l’expression.
Étape 14.2
Simplifiez le résultat.
Étape 14.2.1
La valeur exacte de est .
Étape 14.2.2
La réponse finale est .
Étape 15
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 16
Étape 16.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 16.2
La valeur exacte de est .
Étape 16.3
Multipliez .
Étape 16.3.1
Multipliez par .
Étape 16.3.2
Multipliez par .
Étape 17
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 18
Étape 18.1
Remplacez la variable par dans l’expression.
Étape 18.2
Simplifiez le résultat.
Étape 18.2.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 18.2.2
La valeur exacte de est .
Étape 18.2.3
Multipliez par .
Étape 18.2.4
La réponse finale est .
Étape 19
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
Étape 20