Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 1.2
Résolvez .
Étape 1.2.1
Soustrayez des deux côtés de l’équation.
Étape 1.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 1.2.3
Réécrivez comme .
Étape 1.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.3
Le domaine est l’ensemble des nombres réels.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 2
est continu sur .
est continu
Étape 3
La valeur moyenne de la fonction sur l’intervalle est définie comme .
Étape 4
Remplacez les valeurs réelles dans la formule pour la valeur moyenne d’une fonction.
Étape 5
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6
Étape 6.1
Laissez . Déterminez .
Étape 6.1.1
Différenciez .
Étape 6.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 6.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 6.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.1.5
Additionnez et .
Étape 6.2
Remplacez la limite inférieure pour dans .
Étape 6.3
Simplifiez
Étape 6.3.1
Élevez à la puissance .
Étape 6.3.2
Additionnez et .
Étape 6.4
Remplacez la limite supérieure pour dans .
Étape 6.5
Simplifiez
Étape 6.5.1
Élevez à la puissance .
Étape 6.5.2
Additionnez et .
Étape 6.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 6.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 7
Étape 7.1
Multipliez par .
Étape 7.2
Déplacez à gauche de .
Étape 8
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 9
Associez et .
Étape 10
L’intégrale de par rapport à est .
Étape 11
Étape 11.1
Évaluez sur et sur .
Étape 11.2
Simplifiez
Étape 11.2.1
Soustrayez de .
Étape 11.2.2
Multipliez par .
Étape 12
Additionnez et .
Étape 13
Multipliez par .
Étape 14