Calcul infinitésimal Exemples

Trouver la valeur moyenne de la fonction f(x)=1/((x-6)^2) , [0,5]
,
Étape 1
Pour déterminer la valeur moyenne d’une fonction, cette fonction devrait être continue sur l’intervalle fermé . Pour déterminer si est continu sur ou non, déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 1.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Définissez le égal à .
Étape 1.2.2
Ajoutez aux deux côtés de l’équation.
Étape 1.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 2
est continu sur .
est continu
Étape 3
La valeur moyenne de la fonction sur l’intervalle est définie comme .
Étape 4
Remplacez les valeurs réelles dans la formule pour la valeur moyenne d’une fonction.
Étape 5
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Différenciez .
Étape 5.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 5.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.1.5
Additionnez et .
Étape 5.2
Remplacez la limite inférieure pour dans .
Étape 5.3
Soustrayez de .
Étape 5.4
Remplacez la limite supérieure pour dans .
Étape 5.5
Soustrayez de .
Étape 5.6
Les valeurs déterminées pour et seront utilisées pour évaluer l’intégrale définie.
Étape 5.7
Réécrivez le problème en utilisant , et les nouvelles limites d’intégration.
Étape 6
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 6.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.2.2
Multipliez par .
Étape 7
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 8
Remplacez et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Évaluez sur et sur .
Étape 8.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 8.2.2
Déplacez le moins un du dénominateur de .
Étape 8.2.3
Multipliez par .
Étape 8.2.4
Multipliez par .
Étape 8.2.5
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 8.2.6
Placez le signe moins devant la fraction.
Étape 8.2.7
Écrivez comme une fraction avec un dénominateur commun.
Étape 8.2.8
Associez les numérateurs sur le dénominateur commun.
Étape 8.2.9
Soustrayez de .
Étape 9
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Multipliez par .
Étape 9.2
Additionnez et .
Étape 10
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Annulez le facteur commun.
Étape 10.2
Réécrivez l’expression.
Étape 11