Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3
Multipliez par .
Étape 1.3
Évaluez .
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3
Multipliez par .
Étape 1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.5
Évaluez .
Étape 1.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.5.3
Multipliez par .
Étape 1.6
Simplifiez
Étape 1.6.1
Additionnez et .
Étape 1.6.2
Remettez les termes dans l’ordre.
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Différenciez en utilisant la règle de la constante.
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Additionnez et .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2
Évaluez .
Étape 4.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.2.3
Multipliez par .
Étape 4.1.3
Évaluez .
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.3.3
Multipliez par .
Étape 4.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.5
Évaluez .
Étape 4.1.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.5.3
Multipliez par .
Étape 4.1.6
Simplifiez
Étape 4.1.6.1
Additionnez et .
Étape 4.1.6.2
Remettez les termes dans l’ordre.
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Utilisez la formule quadratique pour déterminer les solutions.
Étape 5.3
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 5.4
Simplifiez
Étape 5.4.1
Simplifiez le numérateur.
Étape 5.4.1.1
Élevez à la puissance .
Étape 5.4.1.2
Multipliez .
Étape 5.4.1.2.1
Multipliez par .
Étape 5.4.1.2.2
Multipliez par .
Étape 5.4.1.3
Factorisez à partir de .
Étape 5.4.1.3.1
Factorisez à partir de .
Étape 5.4.1.3.2
Factorisez à partir de .
Étape 5.4.1.4
Réécrivez comme .
Étape 5.4.1.4.1
Réécrivez comme .
Étape 5.4.1.4.2
Réécrivez comme .
Étape 5.4.1.5
Extrayez les termes de sous le radical.
Étape 5.4.1.6
Élevez à la puissance .
Étape 5.4.2
Multipliez par .
Étape 5.4.3
Simplifiez .
Étape 5.5
Simplifiez l’expression pour résoudre la partie du .
Étape 5.5.1
Simplifiez le numérateur.
Étape 5.5.1.1
Élevez à la puissance .
Étape 5.5.1.2
Multipliez .
Étape 5.5.1.2.1
Multipliez par .
Étape 5.5.1.2.2
Multipliez par .
Étape 5.5.1.3
Factorisez à partir de .
Étape 5.5.1.3.1
Factorisez à partir de .
Étape 5.5.1.3.2
Factorisez à partir de .
Étape 5.5.1.4
Réécrivez comme .
Étape 5.5.1.4.1
Réécrivez comme .
Étape 5.5.1.4.2
Réécrivez comme .
Étape 5.5.1.5
Extrayez les termes de sous le radical.
Étape 5.5.1.6
Élevez à la puissance .
Étape 5.5.2
Multipliez par .
Étape 5.5.3
Simplifiez .
Étape 5.5.4
Remplacez le par .
Étape 5.6
Simplifiez l’expression pour résoudre la partie du .
Étape 5.6.1
Simplifiez le numérateur.
Étape 5.6.1.1
Élevez à la puissance .
Étape 5.6.1.2
Multipliez .
Étape 5.6.1.2.1
Multipliez par .
Étape 5.6.1.2.2
Multipliez par .
Étape 5.6.1.3
Factorisez à partir de .
Étape 5.6.1.3.1
Factorisez à partir de .
Étape 5.6.1.3.2
Factorisez à partir de .
Étape 5.6.1.4
Réécrivez comme .
Étape 5.6.1.4.1
Réécrivez comme .
Étape 5.6.1.4.2
Réécrivez comme .
Étape 5.6.1.5
Extrayez les termes de sous le radical.
Étape 5.6.1.6
Élevez à la puissance .
Étape 5.6.2
Multipliez par .
Étape 5.6.3
Simplifiez .
Étape 5.6.4
Remplacez le par .
Étape 5.7
La réponse finale est la combinaison des deux solutions.
Étape 6
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Simplifiez chaque terme.
Étape 9.1.1
Appliquez la propriété distributive.
Étape 9.1.2
Multipliez par .
Étape 9.2
Associez les termes opposés dans .
Étape 9.2.1
Additionnez et .
Étape 9.2.2
Soustrayez de .
Étape 10
Comme le test de la dérivée première a échoué, il n’y a aucun extremum local.
Aucun extremum local
Étape 11