Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux f(x)=1xy
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez par .
Étape 1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.4
Multipliez par .
Étape 2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.1.4
Multipliez par .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Définissez la dérivée première égale à .
Étape 6
Points critiques à évaluer.
Étape 7
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 8
Comme le test de la dérivée première a échoué, il n’y a aucun extremum local.
Aucun extremum local
Étape 9