Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux f(x)=6csc(x)
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
La dérivée de par rapport à est .
Étape 1.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Multipliez par .
Étape 1.3.2
Réorganisez les facteurs de .
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.3
La dérivée de par rapport à est .
Étape 2.4
Élevez à la puissance .
Étape 2.5
Élevez à la puissance .
Étape 2.6
Utilisez la règle de puissance pour associer des exposants.
Étape 2.7
Additionnez et .
Étape 2.8
La dérivée de par rapport à est .
Étape 2.9
Élevez à la puissance .
Étape 2.10
Utilisez la règle de puissance pour associer des exposants.
Étape 2.11
Additionnez et .
Étape 2.12
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.12.1
Appliquez la propriété distributive.
Étape 2.12.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.12.2.1
Multipliez par .
Étape 2.12.2.2
Multipliez par .
Étape 2.12.3
Remettez les termes dans l’ordre.
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Prenez la cotangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la cotangente.
Étape 5.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
La valeur exacte de est .
Étape 5.2.3
La fonction cotangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 5.2.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.4.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.4.2.1
Associez et .
Étape 5.2.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.4.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.4.3.1
Déplacez à gauche de .
Étape 5.2.4.3.2
Additionnez et .
Étape 5.2.5
La solution de l’équation est .
Étape 6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez égal à .
Étape 6.2
La plage de la cosécante est et . Comme n’est pas sur cette plage, il n’y a pas de solution.
Aucune solution
Aucune solution
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
La valeur exacte de est .
Étape 9.1.2
L’élévation de à toute puissance positive produit .
Étape 9.1.3
Multipliez par .
Étape 9.1.4
La valeur exacte de est .
Étape 9.1.5
Multipliez par .
Étape 9.1.6
La valeur exacte de est .
Étape 9.1.7
Un à n’importe quelle puissance est égal à un.
Étape 9.1.8
Multipliez par .
Étape 9.2
Additionnez et .
Étape 10
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 11
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
La valeur exacte de est .
Étape 11.2.2
Multipliez par .
Étape 11.2.3
La réponse finale est .
Étape 12
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 13
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 13.1.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la cotangente est négative dans le quatrième quadrant.
Étape 13.1.2
La valeur exacte de est .
Étape 13.1.3
Multipliez par .
Étape 13.1.4
L’élévation de à toute puissance positive produit .
Étape 13.1.5
Multipliez par .
Étape 13.1.6
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la cosécante est négative dans le quatrième quadrant.
Étape 13.1.7
La valeur exacte de est .
Étape 13.1.8
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 13.1.8.1
Multipliez par .
Étape 13.1.8.2
Multipliez par .
Étape 13.1.9
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la cosécante est négative dans le quatrième quadrant.
Étape 13.1.10
La valeur exacte de est .
Étape 13.1.11
Multipliez par .
Étape 13.1.12
Élevez à la puissance .
Étape 13.1.13
Multipliez par .
Étape 13.2
Soustrayez de .
Étape 14
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 15
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Remplacez la variable par dans l’expression.
Étape 15.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la cosécante est négative dans le quatrième quadrant.
Étape 15.2.2
La valeur exacte de est .
Étape 15.2.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 15.2.3.1
Multipliez par .
Étape 15.2.3.2
Multipliez par .
Étape 15.2.4
La réponse finale est .
Étape 16
Ce sont les extrema locaux pour .
est un minimum local
est un maximum local
Étape 17