Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
La dérivée de par rapport à est .
Étape 1.3
Évaluez .
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
La dérivée de par rapport à est .
Étape 1.3.3
Multipliez par .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
La dérivée de par rapport à est .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
La dérivée de par rapport à est .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Divisez chaque terme dans l’équation par .
Étape 5
Étape 5.1
Annulez le facteur commun.
Étape 5.2
Divisez par .
Étape 6
Séparez les fractions.
Étape 7
Convertissez de à .
Étape 8
Divisez par .
Étape 9
Séparez les fractions.
Étape 10
Convertissez de à .
Étape 11
Divisez par .
Étape 12
Multipliez par .
Étape 13
Soustrayez des deux côtés de l’équation.
Étape 14
Étape 14.1
Divisez chaque terme dans par .
Étape 14.2
Simplifiez le côté gauche.
Étape 14.2.1
Annulez le facteur commun de .
Étape 14.2.1.1
Annulez le facteur commun.
Étape 14.2.1.2
Divisez par .
Étape 14.3
Simplifiez le côté droit.
Étape 14.3.1
Divisez par .
Étape 15
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 16
Étape 16.1
Évaluez .
Étape 17
La fonction tangente est négative dans les deuxième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 18
Étape 18.1
Ajoutez à .
Étape 18.2
L’angle résultant de est positif et coterminal avec .
Étape 19
La solution de l’équation est .
Étape 20
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 21
Étape 21.1
Simplifiez chaque terme.
Étape 21.1.1
Multipliez par .
Étape 21.1.2
Multipliez par .
Étape 21.2
Additionnez et .
Étape 22
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 23
Étape 23.1
Remplacez la variable par dans l’expression.
Étape 23.2
Simplifiez le résultat.
Étape 23.2.1
Simplifiez chaque terme.
Étape 23.2.1.1
Multipliez par .
Étape 23.2.1.2
Multipliez par .
Étape 23.2.2
Soustrayez de .
Étape 23.2.3
La réponse finale est .
Étape 24
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 25
Étape 25.1
Simplifiez chaque terme.
Étape 25.1.1
Multipliez par .
Étape 25.1.2
Multipliez par .
Étape 25.2
Soustrayez de .
Étape 26
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 27
Étape 27.1
Remplacez la variable par dans l’expression.
Étape 27.2
Simplifiez le résultat.
Étape 27.2.1
Simplifiez chaque terme.
Étape 27.2.1.1
Multipliez par .
Étape 27.2.1.2
Multipliez par .
Étape 27.2.2
Additionnez et .
Étape 27.2.3
La réponse finale est .
Étape 28
Ce sont les extrema locaux pour .
est un minimum local
est un maximum local
Étape 29