Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3
Multipliez par .
Étape 1.4
Simplifiez
Étape 1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.4.2
Associez et .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Appliquez les règles de base des exposants.
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Multipliez les exposants dans .
Étape 2.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2.2
Multipliez par .
Étape 2.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4
Multipliez par .
Étape 2.5
Simplifiez
Étape 2.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.5.2
Associez des termes.
Étape 2.5.2.1
Associez et .
Étape 2.5.2.2
Placez le signe moins devant la fraction.
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.3
Multipliez par .
Étape 4.1.4
Simplifiez
Étape 4.1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.1.4.2
Associez et .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Définissez le numérateur égal à zéro.
Étape 5.3
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution
Étape 6
Étape 6.1
Convertissez des expressions avec exposants fractionnaires en radicaux.
Étape 6.1.1
Transformez en une fraction.
Étape 6.1.1.1
Multipliez par pour retirer la décimale.
Étape 6.1.1.2
Multipliez par .
Étape 6.1.1.3
Annulez le facteur commun à et .
Étape 6.1.1.3.1
Factorisez à partir de .
Étape 6.1.1.3.2
Annulez les facteurs communs.
Étape 6.1.1.3.2.1
Factorisez à partir de .
Étape 6.1.1.3.2.2
Annulez le facteur commun.
Étape 6.1.1.3.2.3
Réécrivez l’expression.
Étape 6.1.2
Appliquez la règle pour réécrire l’élévation à la puissance comme un radical.
Étape 6.2
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6.3
Résolvez .
Étape 6.3.1
Pour retirer le radical du côté gauche de l’équation, élevez les deux côtés de l’équation à la puissance .
Étape 6.3.2
Simplifiez chaque côté de l’équation.
Étape 6.3.2.1
Utilisez pour réécrire comme .
Étape 6.3.2.2
Simplifiez le côté gauche.
Étape 6.3.2.2.1
Multipliez les exposants dans .
Étape 6.3.2.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.3.2.2.1.2
Annulez le facteur commun de .
Étape 6.3.2.2.1.2.1
Annulez le facteur commun.
Étape 6.3.2.2.1.2.2
Réécrivez l’expression.
Étape 6.3.2.3
Simplifiez le côté droit.
Étape 6.3.2.3.1
L’élévation de à toute puissance positive produit .
Étape 6.3.3
Résolvez .
Étape 6.3.3.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6.3.3.2
Simplifiez .
Étape 6.3.3.2.1
Réécrivez comme .
Étape 6.3.3.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 6.4
Définissez le radicande dans inférieur à pour déterminer où l’expression est indéfinie.
Étape 6.5
Résolvez .
Étape 6.5.1
Prenez la racine spécifiée des deux côtés de l’inégalité pour éliminer l’exposant du côté gauche.
Étape 6.5.2
Simplifiez l’équation.
Étape 6.5.2.1
Simplifiez le côté gauche.
Étape 6.5.2.1.1
Extrayez les termes de sous le radical.
Étape 6.5.2.2
Simplifiez le côté droit.
Étape 6.5.2.2.1
Simplifiez .
Étape 6.5.2.2.1.1
Réécrivez comme .
Étape 6.5.2.2.1.2
Extrayez les termes de sous le radical.
Étape 6.6
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
L’élévation de à toute puissance positive produit .
Étape 9.2
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Indéfini
Étape 10
Comme le test de la dérivée première a échoué, il n’y a aucun extremum local.
Aucun extremum local
Étape 11