Calcul infinitésimal Exemples

Trouver les minimums et maximums locaux f(x)=3csc(4x)
Étape 1
Déterminez la dérivée première de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.2.2
La dérivée de par rapport à est .
Étape 1.2.3
Remplacez toutes les occurrences de par .
Étape 1.3
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Multipliez par .
Étape 1.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3
Multipliez par .
Étape 1.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Multipliez par .
Étape 1.3.5.2
Réorganisez les facteurs de .
Étape 2
Déterminez la dérivée seconde de la fonction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2
La dérivée de par rapport à est .
Étape 2.3.3
Remplacez toutes les occurrences de par .
Étape 2.4
Élevez à la puissance .
Étape 2.5
Élevez à la puissance .
Étape 2.6
Utilisez la règle de puissance pour associer des exposants.
Étape 2.7
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Additionnez et .
Étape 2.7.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.7.3
Multipliez par .
Étape 2.7.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.7.5
Multipliez par .
Étape 2.8
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.8.2
La dérivée de par rapport à est .
Étape 2.8.3
Remplacez toutes les occurrences de par .
Étape 2.9
Élevez à la puissance .
Étape 2.10
Utilisez la règle de puissance pour associer des exposants.
Étape 2.11
Additionnez et .
Étape 2.12
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.13
Multipliez par .
Étape 2.14
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.15
Multipliez par .
Étape 2.16
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.16.1
Appliquez la propriété distributive.
Étape 2.16.2
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.16.2.1
Multipliez par .
Étape 2.16.2.2
Multipliez par .
Étape 2.16.3
Remettez les termes dans l’ordre.
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Prenez la cotangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la cotangente.
Étape 5.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
La valeur exacte de est .
Étape 5.2.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1
Divisez chaque terme dans par .
Étape 5.2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.2.1.1
Annulez le facteur commun.
Étape 5.2.3.2.1.2
Divisez par .
Étape 5.2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5.2.3.3.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.3.2.1
Multipliez par .
Étape 5.2.3.3.2.2
Multipliez par .
Étape 5.2.4
La fonction cotangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 5.2.5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.5.1.2
Associez et .
Étape 5.2.5.1.3
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.5.1.4
Additionnez et .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.1.4.1
Remettez dans l’ordre et .
Étape 5.2.5.1.4.2
Additionnez et .
Étape 5.2.5.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.2.1
Divisez chaque terme dans par .
Étape 5.2.5.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.2.2.1.1
Annulez le facteur commun.
Étape 5.2.5.2.2.1.2
Divisez par .
Étape 5.2.5.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.2.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 5.2.5.2.3.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.2.3.2.1
Multipliez par .
Étape 5.2.5.2.3.2.2
Multipliez par .
Étape 5.2.6
La solution de l’équation est .
Étape 6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez égal à .
Étape 6.2
La plage de la cosécante est et . Comme n’est pas sur cette plage, il n’y a pas de solution.
Aucune solution
Aucune solution
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1.1
Factorisez à partir de .
Étape 9.1.1.2
Annulez le facteur commun.
Étape 9.1.1.3
Réécrivez l’expression.
Étape 9.1.2
La valeur exacte de est .
Étape 9.1.3
L’élévation de à toute puissance positive produit .
Étape 9.1.4
Multipliez par .
Étape 9.1.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.5.1
Factorisez à partir de .
Étape 9.1.5.2
Annulez le facteur commun.
Étape 9.1.5.3
Réécrivez l’expression.
Étape 9.1.6
La valeur exacte de est .
Étape 9.1.7
Multipliez par .
Étape 9.1.8
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.8.1
Factorisez à partir de .
Étape 9.1.8.2
Annulez le facteur commun.
Étape 9.1.8.3
Réécrivez l’expression.
Étape 9.1.9
La valeur exacte de est .
Étape 9.1.10
Un à n’importe quelle puissance est égal à un.
Étape 9.1.11
Multipliez par .
Étape 9.2
Additionnez et .
Étape 10
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 11
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1.1
Factorisez à partir de .
Étape 11.2.1.2
Annulez le facteur commun.
Étape 11.2.1.3
Réécrivez l’expression.
Étape 11.2.2
La valeur exacte de est .
Étape 11.2.3
Multipliez par .
Étape 11.2.4
La réponse finale est .
Étape 12
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 13
Évaluez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 13.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 13.1.1.1
Factorisez à partir de .
Étape 13.1.1.2
Annulez le facteur commun.
Étape 13.1.1.3
Réécrivez l’expression.
Étape 13.1.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la cotangente est négative dans le quatrième quadrant.
Étape 13.1.3
La valeur exacte de est .
Étape 13.1.4
Multipliez par .
Étape 13.1.5
L’élévation de à toute puissance positive produit .
Étape 13.1.6
Multipliez par .
Étape 13.1.7
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 13.1.7.1
Factorisez à partir de .
Étape 13.1.7.2
Annulez le facteur commun.
Étape 13.1.7.3
Réécrivez l’expression.
Étape 13.1.8
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la cosécante est négative dans le quatrième quadrant.
Étape 13.1.9
La valeur exacte de est .
Étape 13.1.10
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 13.1.10.1
Multipliez par .
Étape 13.1.10.2
Multipliez par .
Étape 13.1.11
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 13.1.11.1
Factorisez à partir de .
Étape 13.1.11.2
Annulez le facteur commun.
Étape 13.1.11.3
Réécrivez l’expression.
Étape 13.1.12
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la cosécante est négative dans le quatrième quadrant.
Étape 13.1.13
La valeur exacte de est .
Étape 13.1.14
Multipliez par .
Étape 13.1.15
Élevez à la puissance .
Étape 13.1.16
Multipliez par .
Étape 13.2
Soustrayez de .
Étape 14
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 15
Déterminez la valeur y quand .
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Remplacez la variable par dans l’expression.
Étape 15.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1.1
Factorisez à partir de .
Étape 15.2.1.2
Annulez le facteur commun.
Étape 15.2.1.3
Réécrivez l’expression.
Étape 15.2.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car la cosécante est négative dans le quatrième quadrant.
Étape 15.2.3
La valeur exacte de est .
Étape 15.2.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 15.2.4.1
Multipliez par .
Étape 15.2.4.2
Multipliez par .
Étape 15.2.5
La réponse finale est .
Étape 16
Ce sont les extrema locaux pour .
est un minimum local
est un maximum local
Étape 17