Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
La dérivée de par rapport à est .
Étape 1.2.3
Multipliez par .
Étape 1.3
Évaluez .
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.2.3
Remplacez toutes les occurrences de par .
Étape 1.3.3
La dérivée de par rapport à est .
Étape 1.3.4
Multipliez par .
Étape 1.3.5
Multipliez par .
Étape 1.4
Simplifiez
Étape 1.4.1
Remettez les termes dans l’ordre.
Étape 1.4.2
Factorisez à partir de .
Étape 1.4.2.1
Factorisez à partir de .
Étape 1.4.2.2
Factorisez à partir de .
Étape 1.4.2.3
Factorisez à partir de .
Étape 1.4.3
Remettez dans l’ordre et .
Étape 1.4.4
Réécrivez comme .
Étape 1.4.5
Factorisez à partir de .
Étape 1.4.6
Factorisez à partir de .
Étape 1.4.7
Réécrivez comme .
Étape 1.4.8
Appliquez l’identité pythagoricienne.
Étape 1.4.9
Multipliez par en additionnant les exposants.
Étape 1.4.9.1
Déplacez .
Étape 1.4.9.2
Multipliez par .
Étape 1.4.9.2.1
Élevez à la puissance .
Étape 1.4.9.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.4.9.3
Additionnez et .
Étape 1.4.10
Multipliez par .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Multipliez par .
Étape 2.4
La dérivée de par rapport à est .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Divisez chaque terme dans par .
Étape 4.2
Simplifiez le côté gauche.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.3
Simplifiez le côté droit.
Étape 4.3.1
Divisez par .
Étape 5
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6
Étape 6.1
Réécrivez comme .
Étape 6.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 7
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 8
Étape 8.1
La valeur exacte de est .
Étape 9
La fonction sinus est positive dans les premier et deuxième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le deuxième quadrant.
Étape 10
Soustrayez de .
Étape 11
La solution de l’équation est .
Étape 12
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 13
Étape 13.1
La valeur exacte de est .
Étape 13.2
L’élévation de à toute puissance positive produit .
Étape 13.3
Multipliez par .
Étape 13.4
La valeur exacte de est .
Étape 13.5
Multipliez par .
Étape 14
Étape 14.1
Divisez en intervalles distincts autour des valeurs qui rendent la dérivée première ou indéfinie.
Étape 14.2
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 14.2.1
Remplacez la variable par dans l’expression.
Étape 14.2.2
Simplifiez le résultat.
Étape 14.2.2.1
Évaluez .
Étape 14.2.2.2
Élevez à la puissance .
Étape 14.2.2.3
Multipliez par .
Étape 14.2.2.4
La réponse finale est .
Étape 14.3
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 14.3.1
Remplacez la variable par dans l’expression.
Étape 14.3.2
Simplifiez le résultat.
Étape 14.3.2.1
Évaluez .
Étape 14.3.2.2
Élevez à la puissance .
Étape 14.3.2.3
Multipliez par .
Étape 14.3.2.4
La réponse finale est .
Étape 14.4
Remplacez tout nombre, tel que , de l’intervalle dans la dérivée première pour vérifier si le résultat est négatif ou positif.
Étape 14.4.1
Remplacez la variable par dans l’expression.
Étape 14.4.2
Simplifiez le résultat.
Étape 14.4.2.1
Évaluez .
Étape 14.4.2.2
Élevez à la puissance .
Étape 14.4.2.3
Multipliez par .
Étape 14.4.2.4
La réponse finale est .
Étape 14.5
Comme la dérivée première a changé de signe de positive à négative autour de , est un maximum local.
est un maximum local
Étape 14.6
Comme la dérivée première a changé de signe de négative à positive autour de , est un minimum local.
est un minimum local
Étape 14.7
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
est un maximum local
est un minimum local
Étape 15