Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Évaluez la limite.
Étape 1.1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.1.2
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.2.1.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.1.4
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.2.1.5
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.1.6
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
Simplifiez la réponse.
Étape 1.1.2.3.1
Simplifiez chaque terme.
Étape 1.1.2.3.1.1
Simplifiez chaque terme.
Étape 1.1.2.3.1.1.1
Multipliez par .
Étape 1.1.2.3.1.1.2
Multipliez par .
Étape 1.1.2.3.1.2
Soustrayez de .
Étape 1.1.2.3.1.3
Élevez à la puissance .
Étape 1.1.2.3.1.4
Multipliez par .
Étape 1.1.2.3.2
Soustrayez de .
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.2
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.3.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.4
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.3.5
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.6
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.3.7
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.8
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.9
Évaluez les limites en insérant pour toutes les occurrences de .
Étape 1.1.3.9.1
Évaluez la limite de en insérant pour .
Étape 1.1.3.9.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.10
Simplifiez la réponse.
Étape 1.1.3.10.1
Simplifiez chaque terme.
Étape 1.1.3.10.1.1
Simplifiez chaque terme.
Étape 1.1.3.10.1.1.1
Multipliez par .
Étape 1.1.3.10.1.1.2
Multipliez par .
Étape 1.1.3.10.1.2
Soustrayez de .
Étape 1.1.3.10.1.3
Élevez à la puissance .
Étape 1.1.3.10.1.4
Additionnez et .
Étape 1.1.3.10.1.5
Élevez à la puissance .
Étape 1.1.3.10.1.6
Multipliez par .
Étape 1.1.3.10.2
Soustrayez de .
Étape 1.1.3.10.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.11
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3
Évaluez .
Étape 1.3.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.3.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3.1.3
Remplacez toutes les occurrences de par .
Étape 1.3.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3.6
Multipliez par .
Étape 1.3.3.7
Additionnez et .
Étape 1.3.3.8
Multipliez par .
Étape 1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5
Additionnez et .
Étape 1.3.6
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.7
Évaluez .
Étape 1.3.7.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.7.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.7.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.7.1.3
Remplacez toutes les occurrences de par .
Étape 1.3.7.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.7.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.7.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.7.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.7.6
Multipliez par .
Étape 1.3.7.7
Additionnez et .
Étape 1.3.7.8
Multipliez par .
Étape 1.3.8
Évaluez .
Étape 1.3.8.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.8.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.8.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.8.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.8.2.3
Remplacez toutes les occurrences de par .
Étape 1.3.8.3
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.8.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.8.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.8.6
Additionnez et .
Étape 1.3.8.7
Multipliez par .
Étape 1.3.8.8
Multipliez par .
Étape 1.3.9
Simplifiez
Étape 1.3.9.1
Simplifiez chaque terme.
Étape 1.3.9.1.1
Réécrivez comme .
Étape 1.3.9.1.2
Développez à l’aide de la méthode FOIL.
Étape 1.3.9.1.2.1
Appliquez la propriété distributive.
Étape 1.3.9.1.2.2
Appliquez la propriété distributive.
Étape 1.3.9.1.2.3
Appliquez la propriété distributive.
Étape 1.3.9.1.3
Simplifiez et associez les termes similaires.
Étape 1.3.9.1.3.1
Simplifiez chaque terme.
Étape 1.3.9.1.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.3.9.1.3.1.2
Multipliez par en additionnant les exposants.
Étape 1.3.9.1.3.1.2.1
Déplacez .
Étape 1.3.9.1.3.1.2.2
Multipliez par .
Étape 1.3.9.1.3.1.3
Multipliez par .
Étape 1.3.9.1.3.1.4
Multipliez par .
Étape 1.3.9.1.3.1.5
Multipliez par .
Étape 1.3.9.1.3.1.6
Multipliez par .
Étape 1.3.9.1.3.2
Soustrayez de .
Étape 1.3.9.1.4
Appliquez la propriété distributive.
Étape 1.3.9.1.5
Simplifiez
Étape 1.3.9.1.5.1
Multipliez par .
Étape 1.3.9.1.5.2
Multipliez par .
Étape 1.3.9.1.5.3
Multipliez par .
Étape 1.3.9.1.6
Réécrivez comme .
Étape 1.3.9.1.7
Développez à l’aide de la méthode FOIL.
Étape 1.3.9.1.7.1
Appliquez la propriété distributive.
Étape 1.3.9.1.7.2
Appliquez la propriété distributive.
Étape 1.3.9.1.7.3
Appliquez la propriété distributive.
Étape 1.3.9.1.8
Simplifiez et associez les termes similaires.
Étape 1.3.9.1.8.1
Simplifiez chaque terme.
Étape 1.3.9.1.8.1.1
Multipliez par .
Étape 1.3.9.1.8.1.2
Déplacez à gauche de .
Étape 1.3.9.1.8.1.3
Multipliez par .
Étape 1.3.9.1.8.2
Additionnez et .
Étape 1.3.9.1.9
Appliquez la propriété distributive.
Étape 1.3.9.1.10
Simplifiez
Étape 1.3.9.1.10.1
Multipliez par .
Étape 1.3.9.1.10.2
Multipliez par .
Étape 1.3.9.2
Soustrayez de .
Étape 1.3.9.3
Soustrayez de .
Étape 1.3.9.4
Soustrayez de .
Étape 1.4
Annulez le facteur commun à et .
Étape 1.4.1
Factorisez à partir de .
Étape 1.4.2
Annulez les facteurs communs.
Étape 1.4.2.1
Factorisez à partir de .
Étape 1.4.2.2
Factorisez à partir de .
Étape 1.4.2.3
Factorisez à partir de .
Étape 1.4.2.4
Factorisez à partir de .
Étape 1.4.2.5
Factorisez à partir de .
Étape 1.4.2.6
Annulez le facteur commun.
Étape 1.4.2.7
Réécrivez l’expression.
Étape 2
Étape 2.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.2
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 2.3
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 2.4
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.5
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.6
Évaluez la limite de qui est constante lorsque approche de .
Étape 2.7
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.8
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.9
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 2.10
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.11
Évaluez la limite de qui est constante lorsque approche de .
Étape 3
Étape 3.1
Évaluez la limite de en insérant pour .
Étape 3.2
Évaluez la limite de en insérant pour .
Étape 3.3
Évaluez la limite de en insérant pour .
Étape 4
Étape 4.1
Simplifiez le numérateur.
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Multipliez par .
Étape 4.1.3
Soustrayez de .
Étape 4.1.4
Élevez à la puissance .
Étape 4.2
Simplifiez le dénominateur.
Étape 4.2.1
Élevez à la puissance .
Étape 4.2.2
Multipliez par .
Étape 4.2.3
Multipliez par .
Étape 4.2.4
Soustrayez de .
Étape 4.2.5
Additionnez et .
Étape 4.3
Annulez le facteur commun à et .
Étape 4.3.1
Factorisez à partir de .
Étape 4.3.2
Annulez les facteurs communs.
Étape 4.3.2.1
Factorisez à partir de .
Étape 4.3.2.2
Annulez le facteur commun.
Étape 4.3.2.3
Réécrivez l’expression.
Étape 4.4
Multipliez .
Étape 4.4.1
Associez et .
Étape 4.4.2
Multipliez par .
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :