Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Réécrivez comme .
Étape 2
Étape 2.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 2.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 2.1.2
Évaluez la limite du numérateur.
Étape 2.1.2.1
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 2.1.2.2
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 2.1.2.3
La valeur exacte de est .
Étape 2.1.3
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 2.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 2.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 2.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 2.3.1
Différenciez le numérateur et le dénominateur.
Étape 2.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.2.2
La dérivée de par rapport à est .
Étape 2.3.2.3
Remplacez toutes les occurrences de par .
Étape 2.3.3
Réécrivez comme .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.5
Simplifiez
Étape 2.3.5.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.3.5.2
Associez et .
Étape 2.3.6
Réécrivez comme .
Étape 2.3.7
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.8
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.5
Combinez les facteurs.
Étape 2.5.1
Multipliez par .
Étape 2.5.2
Multipliez par .
Étape 2.5.3
Associez et .
Étape 2.6
Annulez le facteur commun de .
Étape 2.6.1
Annulez le facteur commun.
Étape 2.6.2
Divisez par .
Étape 3
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 4
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 5
La valeur exacte de est .