Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Évaluez la limite.
Étape 1.1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.1.2
Placez la limite dans l’exposant.
Étape 1.1.2.1.3
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.2.1.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
Simplifiez la réponse.
Étape 1.1.2.3.1
Simplifiez chaque terme.
Étape 1.1.2.3.1.1
Multipliez par .
Étape 1.1.2.3.1.2
Tout ce qui est élevé à la puissance est .
Étape 1.1.2.3.1.3
Multipliez par .
Étape 1.1.2.3.2
Soustrayez de .
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Évaluez la limite.
Étape 1.1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.1.2
Placez la limite dans l’exposant.
Étape 1.1.3.1.3
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.3.1.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Simplifiez la réponse.
Étape 1.1.3.3.1
Simplifiez chaque terme.
Étape 1.1.3.3.1.1
Multipliez par .
Étape 1.1.3.3.1.2
Tout ce qui est élevé à la puissance est .
Étape 1.1.3.3.1.3
Multipliez par .
Étape 1.1.3.3.2
Soustrayez de .
Étape 1.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3
Évaluez .
Étape 1.3.3.1
Différenciez en utilisant la règle de puissance généralisée qui indique que est où et .
Étape 1.3.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3.5
Multipliez par .
Étape 1.3.3.6
Multipliez par .
Étape 1.3.3.7
Multipliez par .
Étape 1.3.3.8
Multipliez par .
Étape 1.3.3.9
Additionnez et .
Étape 1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5
Simplifiez
Étape 1.3.5.1
Additionnez et .
Étape 1.3.5.2
Réorganisez les facteurs de .
Étape 1.3.5.3
Remettez les facteurs dans l’ordre dans .
Étape 1.3.6
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.7
Évaluez .
Étape 1.3.7.1
Différenciez en utilisant la règle de puissance généralisée qui indique que est où et .
Étape 1.3.7.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.7.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.7.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.7.5
Multipliez par .
Étape 1.3.7.6
Multipliez par .
Étape 1.3.7.7
Multipliez par .
Étape 1.3.7.8
Multipliez par .
Étape 1.3.7.9
Additionnez et .
Étape 1.3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.9
Simplifiez
Étape 1.3.9.1
Additionnez et .
Étape 1.3.9.2
Réorganisez les facteurs de .
Étape 1.3.9.3
Remettez les facteurs dans l’ordre dans .
Étape 1.4
Réduisez.
Étape 1.4.1
Annulez le facteur commun à et .
Étape 1.4.1.1
Factorisez à partir de .
Étape 1.4.1.2
Annulez les facteurs communs.
Étape 1.4.1.2.1
Factorisez à partir de .
Étape 1.4.1.2.2
Annulez le facteur commun.
Étape 1.4.1.2.3
Réécrivez l’expression.
Étape 1.4.2
Annulez le facteur commun de .
Étape 1.4.2.1
Annulez le facteur commun.
Étape 1.4.2.2
Réécrivez l’expression.
Étape 2
Étape 2.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.2
Placez la limite dans l’exposant.
Étape 2.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.4
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.5
Placez le terme hors de la limite car il constant par rapport à .
Étape 3
Étape 3.1
Évaluez la limite de en insérant pour .
Étape 3.2
Évaluez la limite de en insérant pour .
Étape 4
Étape 4.1
Simplifiez chaque terme.
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Multipliez .
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez par .
Étape 4.2
Additionnez et .
Étape 4.3
Tout ce qui est élevé à la puissance est .
Étape 4.4
Multipliez par .