Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de 0 de (a^(mx)-1)/(a^(nx)-1)
Étape 1
Appliquez la Règle de l’Hôpital.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.1.2
Placez la limite dans l’exposant.
Étape 1.1.2.1.3
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.2.1.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.3.1.1
Multipliez par .
Étape 1.1.2.3.1.2
Tout ce qui est élevé à la puissance est .
Étape 1.1.2.3.1.3
Multipliez par .
Étape 1.1.2.3.2
Soustrayez de .
Étape 1.1.3
Évaluez la limite du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.1.2
Placez la limite dans l’exposant.
Étape 1.1.3.1.3
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.3.1.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.3.3.1.1
Multipliez par .
Étape 1.1.3.3.1.2
Tout ce qui est élevé à la puissance est .
Étape 1.1.3.3.1.3
Multipliez par .
Étape 1.1.3.3.2
Soustrayez de .
Étape 1.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Différenciez en utilisant la règle de puissance généralisée qui indique que est et .
Étape 1.3.3.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.3.5
Multipliez par .
Étape 1.3.3.6
Multipliez par .
Étape 1.3.3.7
Multipliez par .
Étape 1.3.3.8
Multipliez par .
Étape 1.3.3.9
Additionnez et .
Étape 1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.5.1
Additionnez et .
Étape 1.3.5.2
Réorganisez les facteurs de .
Étape 1.3.5.3
Remettez les facteurs dans l’ordre dans .
Étape 1.3.6
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.7
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.7.1
Différenciez en utilisant la règle de puissance généralisée qui indique que est et .
Étape 1.3.7.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.7.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.7.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.7.5
Multipliez par .
Étape 1.3.7.6
Multipliez par .
Étape 1.3.7.7
Multipliez par .
Étape 1.3.7.8
Multipliez par .
Étape 1.3.7.9
Additionnez et .
Étape 1.3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.9.1
Additionnez et .
Étape 1.3.9.2
Réorganisez les facteurs de .
Étape 1.3.9.3
Remettez les facteurs dans l’ordre dans .
Étape 1.4
Réduisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.1
Factorisez à partir de .
Étape 1.4.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1.2.1
Factorisez à partir de .
Étape 1.4.1.2.2
Annulez le facteur commun.
Étape 1.4.1.2.3
Réécrivez l’expression.
Étape 1.4.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.2.1
Annulez le facteur commun.
Étape 1.4.2.2
Réécrivez l’expression.
Étape 2
Évaluez la limite.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.2
Placez la limite dans l’exposant.
Étape 2.3
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2.4
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.5
Placez le terme hors de la limite car il constant par rapport à .
Étape 3
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Évaluez la limite de en insérant pour .
Étape 3.2
Évaluez la limite de en insérant pour .
Étape 4
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Multipliez par .
Étape 4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez par .
Étape 4.2
Additionnez et .
Étape 4.3
Tout ce qui est élevé à la puissance est .
Étape 4.4
Multipliez par .