Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Évaluez la limite.
Étape 1.1.2.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.2.1.2
Placez la limite dans l’exposant.
Étape 1.1.2.1.3
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.2.1.4
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
Simplifiez la réponse.
Étape 1.1.2.3.1
Simplifiez chaque terme.
Étape 1.1.2.3.1.1
L’élévation de à toute puissance positive produit .
Étape 1.1.2.3.1.2
Tout ce qui est élevé à la puissance est .
Étape 1.1.2.3.1.3
Multipliez par .
Étape 1.1.2.3.2
Soustrayez de .
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Évaluez la limite.
Étape 1.1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.1.2
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 1.1.3.1.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Simplifiez la réponse.
Étape 1.1.3.3.1
Simplifiez chaque terme.
Étape 1.1.3.3.1.1
La valeur exacte de est .
Étape 1.1.3.3.1.2
Multipliez par .
Étape 1.1.3.3.2
Soustrayez de .
Étape 1.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.3
Évaluez .
Étape 1.3.3.1
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.3.1.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.3.1.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.3.3.1.3
Remplacez toutes les occurrences de par .
Étape 1.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.5
Simplifiez
Étape 1.3.5.1
Additionnez et .
Étape 1.3.5.2
Réorganisez les facteurs de .
Étape 1.3.5.3
Remettez les facteurs dans l’ordre dans .
Étape 1.3.6
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.7
La dérivée de par rapport à est .
Étape 1.3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.9
Additionnez et .
Étape 2
Placez le terme hors de la limite car il constant par rapport à .
Étape 3
Étape 3.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 3.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 3.1.2
Évaluez la limite du numérateur.
Étape 3.1.2.1
Divisez la limite en utilisant la règle du produit des limites sur la limite lorsque approche de .
Étape 3.1.2.2
Placez la limite dans l’exposant.
Étape 3.1.2.3
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 3.1.2.4
Évaluez les limites en insérant pour toutes les occurrences de .
Étape 3.1.2.4.1
Évaluez la limite de en insérant pour .
Étape 3.1.2.4.2
Évaluez la limite de en insérant pour .
Étape 3.1.2.5
Simplifiez la réponse.
Étape 3.1.2.5.1
L’élévation de à toute puissance positive produit .
Étape 3.1.2.5.2
Tout ce qui est élevé à la puissance est .
Étape 3.1.2.5.3
Multipliez par .
Étape 3.1.3
Évaluez la limite du dénominateur.
Étape 3.1.3.1
Évaluez la limite.
Étape 3.1.3.1.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 3.1.3.1.2
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 3.1.3.2
Évaluez la limite de en insérant pour .
Étape 3.1.3.3
Simplifiez la réponse.
Étape 3.1.3.3.1
La valeur exacte de est .
Étape 3.1.3.3.2
Multipliez par .
Étape 3.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 3.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 3.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 3.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 3.3.1
Différenciez le numérateur et le dénominateur.
Étape 3.3.2
Différenciez en utilisant la règle de produit qui indique que est où et .
Étape 3.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 3.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.3.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 3.3.3.3
Remplacez toutes les occurrences de par .
Étape 3.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.5
Élevez à la puissance .
Étape 3.3.6
Élevez à la puissance .
Étape 3.3.7
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.8
Additionnez et .
Étape 3.3.9
Déplacez à gauche de .
Étape 3.3.10
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.11
Multipliez par .
Étape 3.3.12
Simplifiez
Étape 3.3.12.1
Remettez les termes dans l’ordre.
Étape 3.3.12.2
Remettez les facteurs dans l’ordre dans .
Étape 3.3.13
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.14
La dérivée de par rapport à est .
Étape 4
Étape 4.1
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 4.2
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 4.3
Placez le terme hors de la limite car il constant par rapport à .
Étape 4.4
Divisez la limite en utilisant la règle du produit des limites sur la limite lorsque approche de .
Étape 4.5
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 4.6
Placez la limite dans l’exposant.
Étape 4.7
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 4.8
Placez la limite dans l’exposant.
Étape 4.9
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 4.10
Placez le terme hors de la limite car il constant par rapport à .
Étape 4.11
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 5
Étape 5.1
Évaluez la limite de en insérant pour .
Étape 5.2
Évaluez la limite de en insérant pour .
Étape 5.3
Évaluez la limite de en insérant pour .
Étape 5.4
Évaluez la limite de en insérant pour .
Étape 6
Étape 6.1
Simplifiez le numérateur.
Étape 6.1.1
L’élévation de à toute puissance positive produit .
Étape 6.1.2
Multipliez par .
Étape 6.1.3
L’élévation de à toute puissance positive produit .
Étape 6.1.4
Tout ce qui est élevé à la puissance est .
Étape 6.1.5
Multipliez par .
Étape 6.1.6
L’élévation de à toute puissance positive produit .
Étape 6.1.7
Tout ce qui est élevé à la puissance est .
Étape 6.1.8
Additionnez et .
Étape 6.2
La valeur exacte de est .
Étape 6.3
Multipliez par .
Étape 6.4
Divisez par .
Étape 6.5
Multipliez par .