Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2
Associez et .
Étape 1.3
Associez les numérateurs sur le dénominateur commun.
Étape 2
Étape 2.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.2
Associez et .
Étape 3
Étape 3.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 3.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 3.1.2
Évaluez la limite du numérateur.
Étape 3.1.2.1
Évaluez la limite de qui est constante lorsque approche de .
Étape 3.1.2.2
Simplifiez la réponse.
Étape 3.1.2.2.1
Soustrayez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 3.1.2.2.2
La valeur exacte de est .
Étape 3.1.2.2.3
Multipliez par .
Étape 3.1.3
Évaluez la limite du dénominateur.
Étape 3.1.3.1
Évaluez la limite.
Étape 3.1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 3.1.3.1.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 3.1.3.1.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 3.1.3.2
Évaluez la limite de en insérant pour .
Étape 3.1.3.3
Simplifiez la réponse.
Étape 3.1.3.3.1
Annulez le facteur commun de .
Étape 3.1.3.3.1.1
Annulez le facteur commun.
Étape 3.1.3.3.1.2
Réécrivez l’expression.
Étape 3.1.3.3.2
Soustrayez de .
Étape 3.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 3.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 3.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 3.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 3.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 3.3.1
Différenciez le numérateur et le dénominateur.
Étape 3.3.2
Soustrayez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 3.3.3
La valeur exacte de est .
Étape 3.3.4
Multipliez par .
Étape 3.3.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.6
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.3.7
Évaluez .
Étape 3.3.7.1
Déplacez à gauche de .
Étape 3.3.7.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.7.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 3.3.7.4
Multipliez par .
Étape 3.3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.9
Additionnez et .
Étape 3.4
Annulez le facteur commun à et .
Étape 3.4.1
Factorisez à partir de .
Étape 3.4.2
Annulez les facteurs communs.
Étape 3.4.2.1
Factorisez à partir de .
Étape 3.4.2.2
Annulez le facteur commun.
Étape 3.4.2.3
Réécrivez l’expression.
Étape 3.4.2.4
Divisez par .
Étape 4
Évaluez la limite de qui est constante lorsque approche de .