Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Déplacez la limite dans la fonction trigonométrique car la tangente est continue.
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
La valeur exacte de est .
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Évaluez la limite.
Étape 1.1.3.1.1
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 1.1.3.1.2
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Simplifiez la réponse.
Étape 1.1.3.3.1
La valeur exacte de est .
Étape 1.1.3.3.2
L’élévation de à toute puissance positive produit .
Étape 1.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
La dérivée de par rapport à est .
Étape 1.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3.3
Remplacez toutes les occurrences de par .
Étape 1.3.4
La dérivée de par rapport à est .
Étape 1.3.5
Simplifiez
Étape 1.3.5.1
Réorganisez les facteurs de .
Étape 1.3.5.2
Remettez dans l’ordre et .
Étape 1.3.5.3
Remettez dans l’ordre et .
Étape 1.3.5.4
Appliquez l’identité d’angle double du sinus.
Étape 2
Comme la fonction approche de depuis la gauche et depuis la droite, la limite n’existe pas.