Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Évaluez la limite.
Étape 1.1.2.1.1
Déplacez la limite dans la fonction trigonométrique car le sinus est continu.
Étape 1.1.2.1.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
Simplifiez la réponse.
Étape 1.1.2.3.1
Soustrayez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 1.1.2.3.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant.
Étape 1.1.2.3.3
La valeur exacte de est .
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Évaluez la limite.
Étape 1.1.3.1.1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.1.2
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Soustrayez de .
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.2.2
La dérivée de par rapport à est .
Étape 1.3.2.3
Remplacez toutes les occurrences de par .
Étape 1.3.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.5
Multipliez par .
Étape 1.3.6
Déplacez à gauche de .
Étape 1.3.7
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.8
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.9
Évaluez .
Étape 1.3.9.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.9.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.9.3
Multipliez par .
Étape 1.3.10
Soustrayez de .
Étape 1.4
Déplacez le moins un du dénominateur de .
Étape 2
Étape 2.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.2
Déplacez la limite dans la fonction trigonométrique car le cosinus est continu.
Étape 2.3
Placez le terme hors de la limite car il constant par rapport à .
Étape 3
Évaluez la limite de en insérant pour .
Étape 4
Étape 4.1
Soustrayez des rotations complètes de jusqu’à ce que l’angle soit supérieur ou égal à et inférieur à .
Étape 4.2
Appliquez l’angle de référence en trouvant l’angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l’expression négative car le cosinus est négatif dans le deuxième quadrant.
Étape 4.3
La valeur exacte de est .
Étape 4.4
Multipliez .
Étape 4.4.1
Multipliez par .
Étape 4.4.2
Multipliez par .