Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Lorsque approche de depuis le côté droit, diminue sans borne.
Étape 1.1.3
Comme l’exposant approche de , la quantité approche de .
Étape 1.1.4
L’infini divisé l’infini est indéfini.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.2.2
La dérivée de par rapport à est .
Étape 1.3.2.3
Remplacez toutes les occurrences de par .
Étape 1.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.4
Associez et .
Étape 1.3.5
Associez et .
Étape 1.3.6
Annulez le facteur commun à et .
Étape 1.3.6.1
Factorisez à partir de .
Étape 1.3.6.2
Annulez les facteurs communs.
Étape 1.3.6.2.1
Factorisez à partir de .
Étape 1.3.6.2.2
Annulez le facteur commun.
Étape 1.3.6.2.3
Réécrivez l’expression.
Étape 1.3.7
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.7.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.7.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 1.3.7.3
Remplacez toutes les occurrences de par .
Étape 1.3.8
Réécrivez comme .
Étape 1.3.9
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.10
Simplifiez
Étape 1.3.10.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.3.10.2
Associez et .
Étape 1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5
Multipliez par .
Étape 1.6
Annulez le facteur commun à et .
Étape 1.6.1
Factorisez à partir de .
Étape 1.6.2
Annulez les facteurs communs.
Étape 1.6.2.1
Factorisez à partir de .
Étape 1.6.2.2
Annulez le facteur commun.
Étape 1.6.2.3
Réécrivez l’expression.
Étape 2
Étape 2.1
Placez le terme hors de la limite car il constant par rapport à .
Étape 2.2
Placez le terme hors de la limite car il constant par rapport à .
Étape 3
Comme son numérateur approche d’un nombre réel alors que son dénominateur n’a pas de borne, la fraction approche de .
Étape 4
Multipliez par .