Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de -1 de 2x^4-2x^3-2x^2-2
Étape 1
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 2
Placez le terme hors de la limite car il constant par rapport à .
Étape 3
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 4
Placez le terme hors de la limite car il constant par rapport à .
Étape 5
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 6
Placez le terme hors de la limite car il constant par rapport à .
Étape 7
Déplacez l’exposant de hors de la limite en utilisant la règle des puissances limites.
Étape 8
Évaluez la limite de qui est constante lorsque approche de .
Étape 9
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Évaluez la limite de en insérant pour .
Étape 9.2
Évaluez la limite de en insérant pour .
Étape 9.3
Évaluez la limite de en insérant pour .
Étape 10
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Élevez à la puissance .
Étape 10.1.2
Multipliez par .
Étape 10.1.3
Élevez à la puissance .
Étape 10.1.4
Multipliez par .
Étape 10.1.5
Élevez à la puissance .
Étape 10.1.6
Multipliez par .
Étape 10.1.7
Multipliez par .
Étape 10.2
Additionnez et .
Étape 10.3
Soustrayez de .
Étape 10.4
Soustrayez de .