Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Évaluez la limite du numérateur et la limite du dénominateur.
Étape 1.1.1
Prenez la limite du numérateur et la limite du dénominateur.
Étape 1.1.2
Évaluez la limite du numérateur.
Étape 1.1.2.1
Placez la limite sous le radical.
Étape 1.1.2.2
Évaluez la limite de en insérant pour .
Étape 1.1.2.3
Simplifiez la réponse.
Étape 1.1.2.3.1
Réécrivez comme .
Étape 1.1.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.1.3
Évaluez la limite du dénominateur.
Étape 1.1.3.1
Évaluez la limite.
Étape 1.1.3.1.1
Placez la limite à l’intérieur du logarithme.
Étape 1.1.3.1.2
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 1.1.3.1.3
Évaluez la limite de qui est constante lorsque approche de .
Étape 1.1.3.2
Évaluez la limite de en insérant pour .
Étape 1.1.3.3
Simplifiez la réponse.
Étape 1.1.3.3.1
Additionnez et .
Étape 1.1.3.3.2
Le logarithme naturel de est .
Étape 1.1.3.3.3
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.3.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.1.4
L’expression contient une division par . L’expression est indéfinie.
Indéfini
Étape 1.2
Comme est de forme indéterminée, appliquez la règle de l’Hôpital. La règle de l’Hôpital indique que la limite d’un quotient de fonctions est égale à la limite du quotient de leurs dérivées.
Étape 1.3
Déterminez la dérivée du numérateur et du dénominateur.
Étape 1.3.1
Différenciez le numérateur et le dénominateur.
Étape 1.3.2
Utilisez pour réécrire comme .
Étape 1.3.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.3.5
Associez et .
Étape 1.3.6
Associez les numérateurs sur le dénominateur commun.
Étape 1.3.7
Simplifiez le numérateur.
Étape 1.3.7.1
Multipliez par .
Étape 1.3.7.2
Soustrayez de .
Étape 1.3.8
Placez le signe moins devant la fraction.
Étape 1.3.9
Simplifiez
Étape 1.3.9.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.3.9.2
Multipliez par .
Étape 1.3.10
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 1.3.10.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.10.2
La dérivée de par rapport à est .
Étape 1.3.10.3
Remplacez toutes les occurrences de par .
Étape 1.3.11
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3.12
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.13
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.14
Additionnez et .
Étape 1.3.15
Multipliez par .
Étape 1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.5
Réécrivez comme .
Étape 1.6
Multipliez par .
Étape 2
Comme le numérateur est positif et le dénominateur approche de zéro et est supérieur à zéro pour près de vers la droite, la fonction augmente sans borne.