Calcul infinitésimal Exemples

Évaluer la limite limite lorsque x approche de 1 depuis le côté droit de x/(1-e^((x+1)/(x+3)))
Étape 1
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 2
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 3
Évaluez la limite de qui est constante lorsque approche de .
Étape 4
Placez la limite dans l’exposant.
Étape 5
Divisez la limite en utilisant la règle du quotient des limites sur la limite lorsque approche de .
Étape 6
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 7
Évaluez la limite de qui est constante lorsque approche de .
Étape 8
Divisez la limite en utilisant la règle de la somme des limites sur la limite lorsque approche de .
Étape 9
Évaluez la limite de qui est constante lorsque approche de .
Étape 10
Évaluez les limites en insérant pour toutes les occurrences de .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Évaluez la limite de en insérant pour .
Étape 10.2
Évaluez la limite de en insérant pour .
Étape 10.3
Évaluez la limite de en insérant pour .
Étape 11
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Additionnez et .
Étape 11.2
Additionnez et .
Étape 11.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Réécrivez comme .
Étape 11.3.2
Réécrivez comme .
Étape 11.3.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 12
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :