Calcul infinitésimal Exemples

Encontre a Derivada de 2nd 1+1/x+1/(x^2)
Étape 1
Déterminez la dérivée première.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Différenciez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez comme .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Réécrivez comme .
Étape 1.3.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 1.3.2.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.2.3
Remplacez toutes les occurrences de par .
Étape 1.3.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 1.3.4
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.4.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 1.3.4.2
Multipliez par .
Étape 1.3.5
Multipliez par .
Étape 1.3.6
Élevez à la puissance .
Étape 1.3.7
Utilisez la règle de puissance pour associer des exposants.
Étape 1.3.8
Soustrayez de .
Étape 1.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.4.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.4.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.4.3.1
Soustrayez de .
Étape 1.4.3.2
Associez et .
Étape 1.4.3.3
Placez le signe moins devant la fraction.
Étape 2
Déterminez la dérivée seconde.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Différenciez en utilisant la règle de produit qui indique que est et .
Étape 2.2.2
Réécrivez comme .
Étape 2.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.3.3
Remplacez toutes les occurrences de par .
Étape 2.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.5
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.6
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.6.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.6.2
Multipliez par .
Étape 2.2.7
Multipliez par .
Étape 2.2.8
Élevez à la puissance .
Étape 2.2.9
Utilisez la règle de puissance pour associer des exposants.
Étape 2.2.10
Soustrayez de .
Étape 2.2.11
Multipliez par .
Étape 2.2.12
Multipliez par .
Étape 2.2.13
Additionnez et .
Étape 2.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Réécrivez comme .
Étape 2.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.3.3
Remplacez toutes les occurrences de par .
Étape 2.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.5.2
Multipliez par .
Étape 2.3.6
Multipliez par .
Étape 2.3.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.7.1
Déplacez .
Étape 2.3.7.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.3.7.3
Soustrayez de .
Étape 2.3.8
Multipliez par .
Étape 2.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.4.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.4.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.1
Associez et .
Étape 2.4.3.2
Associez et .
Étape 3
Déterminez la dérivée troisième.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 3.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.2.2
Réécrivez comme .
Étape 3.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.3.3
Remplacez toutes les occurrences de par .
Étape 3.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.2.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.5.2
Multipliez par .
Étape 3.2.6
Multipliez par .
Étape 3.2.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.7.1
Déplacez .
Étape 3.2.7.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.7.3
Soustrayez de .
Étape 3.2.8
Multipliez par .
Étape 3.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 3.3.2
Réécrivez comme .
Étape 3.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 3.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.3.3
Remplacez toutes les occurrences de par .
Étape 3.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 3.3.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.5.2
Multipliez par .
Étape 3.3.6
Multipliez par .
Étape 3.3.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.7.1
Déplacez .
Étape 3.3.7.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.7.3
Soustrayez de .
Étape 3.3.8
Multipliez par .
Étape 3.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.4.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3.4.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.1
Associez et .
Étape 3.4.3.2
Placez le signe moins devant la fraction.
Étape 3.4.3.3
Associez et .
Étape 3.4.3.4
Placez le signe moins devant la fraction.
Étape 4
Déterminez la dérivée quatrième.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2.2
Réécrivez comme .
Étape 4.2.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.2.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2.3.3
Remplacez toutes les occurrences de par .
Étape 4.2.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.5.2
Multipliez par .
Étape 4.2.6
Multipliez par .
Étape 4.2.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.7.1
Déplacez .
Étape 4.2.7.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.2.7.3
Soustrayez de .
Étape 4.2.8
Multipliez par .
Étape 4.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.2
Réécrivez comme .
Étape 4.3.3
Différenciez en utilisant la règle d’enchaînement, qui indique que est et .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 4.3.3.2
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3.3.3
Remplacez toutes les occurrences de par .
Étape 4.3.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.3.5
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.3.5.2
Multipliez par .
Étape 4.3.6
Multipliez par .
Étape 4.3.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.7.1
Déplacez .
Étape 4.3.7.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.3.7.3
Soustrayez de .
Étape 4.3.8
Multipliez par .
Étape 4.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.4.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 4.4.3
Associez des termes.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.3.1
Associez et .
Étape 4.4.3.2
Associez et .