Calcul infinitésimal Exemples

Évaluer l'intégrale intégrale de 4/(x^3)-1/(x^2)+1/x- racine carrée de x+8x^3-e^x par rapport à x
Étape 1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 3
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 3.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.2
Multipliez par .
Étape 4
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Associez et .
Étape 5.2
Placez sur le dénominateur en utilisant la règle de l’exposant négatif .
Étape 6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 7.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 7.2.2
Multipliez par .
Étape 8
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 9
L’intégrale de par rapport à est .
Étape 10
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 11
Utilisez pour réécrire comme .
Étape 12
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 13
Associez et .
Étape 14
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 15
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 16
Associez et .
Étape 17
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 18
L’intégrale de par rapport à est .
Étape 19
Simplifiez
Étape 20
Remettez les termes dans l’ordre.